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Abstract 

Several new quadrature sets for use in the discrete ordinates method of 

solving the Boltzmann neutral particle transport equation are derived. These 

symmetric quadratures extend the traditional symmetric quadratures by 

allowing ordinates perpendicular to one or two of the coordinate axes. 

Comparable accuracy with fewer required ordinates is obtained. 

Quadratures up to seventh order are presented. The validity and efficiency of 

the quadratures is then tested and compared with the LQn level symmetric 

quadratures relative to a Monte Carlo benchmark solution. The criteria for 

comparison include current through the surface, scalar flux at the surface, 

volume average scalar flux, and time required for convergence. Appreciable 

computational cost was saved when used in an unstructured tetrahedral cell 

code using highly accurate characteristic methods. However, no appreciable 

savings in computation time was found using the new quadratures compared 

with traditional Sn methods on a regular Cartesian mesh using the standard 

diamond difference method. These quadratures are recommended for use in 

three-dimensional calculations on an unstructured mesh. 
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I. Introduction 

This research developed a set of angular quadratures that are 

computationally efficient when used with the discrete ordinates method to 

solve the three-dimensional Boltzmann neutral particle transport equation. 

The quadrature sets contain directions perpendicular to one or more cardinal 

directions. These sets are tested for accuracy and computational efficiency. 

Performance comparisons are made with traditional (level symmetric) 

quadrature sets. Types of problems and conditions where these quadratures 

are most applicable are discussed. 

Background 

The foundation of transport theory is the Boltzmann transport 

equation (BTE). This equation, formulated over a century ago, was originally 

developed for the study of the kinetic theory of gases (1: 1). Preliminary 

study in the field was primarily of the diffusion of light by the atmosphere. 

Then study began in the early part of the twentieth century on investigating 

the diffusion of energy through the atmosphere of a star (2: 1). The scale of 

these problems are such that they can be modeled as semi-infinite media 

with one-dimensional geometry and therefore the methods of their solution 

are of limited application (1: 1). 
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In the 1940s, interest in the military and industrial application of 

nuclear energy stimulated a tremendous amount of research into neutral 

particle transport. The incredible urgency involved in the research of nuclear 

energy induced by the events of World War II necessarily resulted in the 

development and use of approximate methods for solving the linearized 

transport equation (2:1). 

Motivation 

Military and industrial research into the use of nuclear energy using 

actual nuclear material has decreased substantially in recent years. The 

comprehensive nuclear test ban treaty (CTBT), if ratified, will eliminate our 

ability to obtain any further real data on new weapons designs or systems 

survivability in or near a real threat environment. Some aspects of the 

radiation environment resulting from a nuclear detonation are simulated at 

various test sites. These tests can only approximate the actual post 

detonation environment and are very costly (17). It is currently politically 

undesirable for private industry to perform research using significant of 

amounts nuclear material or to build new nuclear research facilities. These 

and other factors have greatly increased the need for accurate computer 

modeling of nuclear material and effects. The high performance computers 

needed for this modeling are very expensive, and therefore anything that can 

increase the efficiency of these machines will translate directly into 
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substantial savings by increasing their productivity and extending their 

useful life. Reduction in computation time also increases the practicality of 

analyzing a large variety of similar scenarios for threat analysis or system 

optimization. 

The Boltzmann Transport Equation 

The Boltzmann transport equation (Equation 1-1) is a conservation 

equation for the flux of neutral particles (1: 24). The particles can be 

neutrons, photons, or any other neutral particle given the nuclear data. The 

angular flux, \\), is dependent on position (f), direction of motion (Q), on 

speed or energy (v, E), and time (t). Equation (1-1) represents a balance 

between the loss rate (right side) and gain rate (left side) of particles that 

exist at each point of this seven dimensional phase space (3:1-2); 

i^ + Q.V + at(r,E,t) 
v dt 

i|/l: (r,E,Q,t) = 
(1-1) 

jdE jd0as (r, E -> E, Q • fif, t)q/(r, E, Q, t) + s(f, E, Q, t) 

where the variables are defined in Table 1. 
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Table 1-1: Variable Definitions for the BTE, Equation (1-1) 

Variable Description 
V magnitude of the velocity 
t time 
r position 
E energy 

CTt total macroscopic cross-section for 
interaction ( absorption and scatter) 

°s macroscopic scattering cross-section 

s total non-scattering source 

V angular flux: a distribution function 
of particles at point f, with energy E, 
moving in direction Q at time t 

Q unit vector aligned along the 
streaming direction of particles: it is 
often shown as three components, or 

direction cosines, [i, r\, £, defined by 

H = Q-ex,     r| = Q-ey,     ^ = Q-ez 

as shown in Figure 1-1 

■*■ e, 

Figure 1-1: Direction Cosines 

Though discrete ordinates is valid for time dependent problems, this 

treatment will assume steady state conditions with all time dependence 
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suppressed; therefore the first term in Equation (1-1) (representing the time 

rate of change of particles in the phase space) vanishes. The remaining terms 

represent the steady state balance equation. The second term in the brackets 

on the left of Equation (1-1) is the streaming operator and represents the loss 

rate due to particle divergence. The final term in the brackets on the left is 

the collision operator and represents the loss rate due to particle interaction 

with the medium. This interaction could be absorption (destroying the 

particle), or scatter (changing the particle's energy or direction) (3:1-2). 

The first term on the right of Equation (1-1) is the gain rate due to 

particles traveling in other directions that scatter into the given direction, Q. 

As a consequence of the isotropic material assumption, the distribution of 

particles scattering into a given direction is not a function of the incident 

angle, Q'; however it is a function of the angle between the incident direction 

and final direction, (Q • Q'j. Despite the isotropic material assumption, this 

dependence on scattering angle means that scattering may be anisotropic (1). 

The final term represents the gain rate from production of particles by any 

source mechanism. The source can be internal, such as radioactive decay and 

fission or external such as solar x-rays or an incident beam. A more detailed 

discussion of the BTE and definition of its components is presented in section 

II. 

The macroscopic cross sections are functions of position, through 

spatially varying number density or changes in material, and of energy 
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through the microscopic cross sections in which fundamental properties of the 

isotopes are involved. In general the microscopic cross sections could have 

some additional implicit spatial variation. For example, this could be due to 

a temperature-dependence through Doppler broadening (1: 6). This research 

assumes each material is uniform and isotropic and therefore no such implicit 

spatial dependence exists. 

The physical quantities most often of interest to be found via the BTE 

are the scalar flux <j) (zeroth angular moment of the vector flux) and the 

vector current J (first angular moment). The scalar flux is of interest as it 

represents the total expected particle path length traveled per unit volume at 

a given location in the medium. This will determine the reaction rates for 

such things as fission and neutron activation. The vector current will 

determine the leakage rate from one region to the next or through boundaries 

(3:1-3). 

Only a limited number of analytic and semi-analytic solutions exist for 

the BTE. Most of these solutions are for highly idealized problems. Many 

ingenious methods such as discrete ordinates, Monte Carlo, even-parity, 

finite-elements, and Green functions have been developed to solve the 

transport equation and to extend the application of such knowledge. The 

diffusion equation can be derived from the BTE using several simplifying 

assumptions regarding the angular dependence. For problems with nearly 

isotropic scatter, this can yield approximate results (16: 2). Of particular 
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interest are methods capable of providing solutions to the broad range of 

geometrical configurations found in nuclear reactor and radiation shielding 

applications (1: 1). From a military perspective, in addition to the application 

to power generation, accurate modeling of neutron flux allows for more 

precise modeling of the yield and effects of nuclear weapons. 

The advent of high-speed computing and large storage capacity has led 

to the refinement and use of two primary numerical methods of attaining a 

solution to the BTE: the method of discrete ordinates and Monte Carlo (1: 2). 

Other less used methods will not be examined. The theory and development 

of the Monte Carlo method will not be discussed in detail; however, Monte 

Carlo solutions will be used as benchmarks. 

Since its evolution from the angular segmentation formulation by 

Carlson in 1957 discrete ordinates has become a widely used method for 

solving the integrodifferential form of the transport equation. The discrete 

ordinates method involves enforcing the transport equation only at discrete 

angular directions called ordinates. These ordinates are selected such that 

the flux moments may be evaluated accurately by a weighted sum (1: 118). 

For example the scalar flux (zeroth flux moment) is 

4>(?,E,t)= JdQi|/(r,E,Qt)«£wny(r,E,Qn,t). 
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A more detailed discussion of the flux moments is found in Chapter II. The 

advantages of the discrete ordinates method are the relatively simple 

derivation and the subsequent ease of transformation into algorithms of good 

computational efficiency (1: 116). It also lends itself well to the discretizing of 

energy into multiple energy groups. A distinct advantage over the Monte 

Carlo method is that it provides flux and current data everywhere in the 

problem rather than only at a limited number of locations. A quadrature set 

is the combination of discrete angles and weights used in a weighted sum to 

evaluate the flux moments. 

There are two independent angular directions for Q. The directions 

are parameterized by three direction cosines that obey the relationship 

uW + ^l (1-3) 

where |j,, n, and B, are shown in Figure 1-1. 

Once the angular approximation has been made, a spatial 

discretization scheme must be used. Computational cost and storage 

requirements are directly proportional to the number of spatial cells and 

discrete ordinates used. A large number of spatial schemes have been 

formulated for use in discrete ordinates calculations. They include linear 

methods such as diamond difference, linear discontinuous, and linear 

characteristic and non-linear methods such exponential characteristic (9). 
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The most serious drawback to the discrete ordinates method is the 

buildup of truncation errors due to the discretized angular and spatial 

representations (1: 131). The truncation errors can result in random error, 

which limits the accuracy of the results, or may lead to physically unrealistic 

results such as negative fluxes or sources. Systematic truncation error may 

lead to what are known as ray effects (21, 8, 3). These are errors caused by 

the discrete ordinates method of limiting particle motion to discrete 

directions or rays. Flux due to unscattered particles will only be found to 

occur at points where a line can be drawn from a source to the point in the 

direction of a discrete ordinate. This causes the scalar flux to be calculated 

higher than expected at points along discrete ordinate directions and lower 

between. The method is not well suited to geometry with a strongly peaked 

flux in a given direction. Generally, a separate method must be used to 

calculate the first scatter source for such a problem. In order to increase 

accuracy of the discrete ordinates method and minimize the negative 

consequences, it is either necessary to increase the number of directions in 

the angular quadrature, thus increasing the computation time and storage 

requirements of the computer system, or to develop an alternative 

quadrature that produces less error with fewer directions. This research 

concentrates on increasing the accuracy of the discrete ordinates 

approximation while minimizing the number of angles. 
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The primary drawback of allowing motion perpendicular to one or 

more cardinal directions in a quadrature set is that mathematical instability 

may result when using current computer codes. The resulting zero 

components of flux often generate run-time errors. The advantages of using 

directions parallel to cell boundaries are (due to one or two of the direction 

cosines being zero) the discrete ordinates equations simplify significantly and 

fewer directions are required for the same order of anisotropy, thus allowing 

for increased computational efficiency. 

Except for the simple case of isotropic scatter, the cross section for 

scattering will be a function of the scattering angle as well as energy. 

Separation of the angular and energy dependence is assumed. Traditionally, 

cross sections are then expanded in orthogonal Legendre polynomials (1: 13). 

The order of this expansion is another limit to the accuracy obtainable by the 

discrete ordinates method. 

The high performance computers needed to perform these calculations 

are very expensive, and therefore anything that can increase the efficiency of 

these machines will translate directly into substantial savings by increasing 

their useful life. Reduction of computation time also increases the 

practicality of analyzing a large variety of similar scenarios for threat 

analysis or system optimization. 
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Statement of the Problem 

The objective of this research is to develop and evaluate new 

quadrature sets that produce accurate discrete ordinates solutions to the 

BTE using a minimum number of ordinates. The viability of including 

ordinates perpendicular to one or two cardinal directions is examined. This 

includes deriving and implementing the appropriate quadrature angles and 

weights, and comparing the results with those obtained with standard level- 

symmetric LQn quadratures and with Monte Carlo benchmark solutions. 

Scope 

This research includes the derivation and implementation of discrete 

ordinates quadrature sets that include directions perpendicular to one or two 

cardinal directions. Demonstration of the method including comparison to 

traditional level-symmetric quadratures with regard to computational cost 

(execution time) and accuracy of results based on a benchmark calculation is 

performed. The test problems use three-dimensional Cartesian coordinates 

with no time or energy dependence. The test problems were run using 

TETRAN (13), an unstructured mesh tetrahedral cell code developed at the 

Air Force Institute of Technology and the THREEDANT code of the RSICC 

Computer Code Collection, DANTSYS 3.0 (14) from Los Alamos National 

Laboratory (LANL) using a rectangular parallelepiped mesh. LANL's MCNP 

(Monte Carlo Neutron Photon) transport code package (15) provided 
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benchmark solutions. Due to current limitations in the TETRAN code still in 

development, the test problems are defined as one energy group, isotropic 

scatter transport problems. Multiple levels of spatial mesh refinement are 

used. The method is tested to identify any variation in performance and 

determine an optimal usage. The scope of the comparison using the output of 

the THREEDANT module is limited due to the requirement to modify the 

developed quadratures in order for the module to run. See chapter IV for a 

discussion of the modifications. No code changes ore new modules were 

written to augment THREEDANT to obtain a more accurate comparison of 

the quadrature sets. 

General Approach and Sequence of Presentation 

In chapter II the integrodifferential form of the Boltzmann transport 

equations is discretized over angle. A brief discussion of spatial and energy 

discretization is included. The consequences of discretization are 

enumerated. The method of generating the new quadrature sets is developed 

in chapter III. Several quadrature sets of various order are presented. The 

method is implemented using two test problems and the results are 

presented in chapter IV. The geometry of each test problem has been 

selected to, in the first case, exacerbate, then in the second, mitigate the 

problem of ray effects. Traditional level symmetric quadratures are used on 

the same test problems. Benchmark calculations were performed on each 
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test problem using a Monte Carlo simulation. The methods are compared for 

accuracy and computational efficiency and potential advantages or 

disadvantages of the method identified. Consideration is given to 

smoothness, pointwise and global accuracy, ray-effects, and other systematic 

errors. 

Once the method has been tested and analyzed, recommendations for 

use and for further research are given in the final chapter. Appendices 

contain complete derivations of the equations used to generate the 

quadratures as well as any mathematical routines used to solve them. Also, 

pertinent portions of input and output files of the test problems are included 
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II. Theory 

This chapter will present a development of the discrete ordinates 

method, the criteria for selecting a quadrature, discuss spatial discretization, 

and some the consequences of applying these approximations. 

The steady state assumptions reduces the Boltzmann transport 

equation (Equation 1-1) to: 

Q-Vv|/(f,E,Q) + o(f,E)\|/(f,E,Q) = 

JdE'JdQ'as(f ,E -► E',Q • Q')i|/(r ,E',Q) + s(f ,E,Q) 
(II-l) 

In order to yield a convenient normalization over all angles, the incremental 

solid angle is defined as 

so that 

_ dco d9sin0 _ do d\i ,-,-. ~ 
~~2n      2      ~ 2TI  2 

J^Jirijr-1- (II"3) 
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Definitions of the above angles are shown in Figure II-l (1: 11). Equation (II- 

1) contains terms that are functions of position, scattering angle, and energy. 

The energy dependence in the discrete ordinates approximation is most often 

accounted for by dividing the energy range of interest into a number of 

intervals. It is assumed that for each interval, cross-sections are given as 

average values over the interval (18: 109). The transport equation is then 

fl__L  

'^             1               ">,   / 
^            1               ß / 

!    ^aj        / 
1     "+   i      / 

y 
Figure 11-1: Particle Entering from Direction Q, Scattering into direction Q' 

solved in each energy interval as a mono-energetic equation with particle 

contributions scattered from outside the energy interval added as a source 

term and particles scattering from the interval of interest into other energy 

intervals treated as losses. The resulting equations are known as the 

multigroup equations (1: 61). For clarity, the remainder of the derivations 

given will be for a mono-energetic system. The Boltzmann equation then 

becomes the mono-energetic transport equation: 
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Q.V\|/(f,Q) + a(f)i|/(r,n) = JdQ'o8(r,Q-Q') y(r,Q') + s(r,Q).      (II-4) 

In the discrete ordinates method each term of the integrodifferential 

transport equation is assumed to be a separable function of space and angle 

and the dependencies are dealt with separately (3:1-3). Both the spatial and 

angular variables are required to be discretized before the problem may be 

solved numerically. The angular discretization, being the focus of this 

research, will be considered first and discussed in some detail while the 

spatial discretization will be dealt with later. 

Angular Discretization 

The majority of the derivation that follows is an extension into three- 

dimensions of the procedure presented by Lewis and Miller (1). The 

differential scattering cross sections are expanded in orthogonal Legendre 

polynomials p^Q-Q') where \i0 =Q • Q' is the cosine of the scattering angle. 

The differential scattering cross section may be expressed as 

as(f,Q-Q')« Z (21 + l)asi(r)Pi(Q-Q'). 01-5) 
v ;    i=o v 

The scattering moments GS1 are found from 
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-l   z 

having taken advantage of the orthogonality property of the Legendre 

polynomials. The expansion in Equation (II-5) has been truncated at L+l 

terms, assuming and adequate level of approximation, taking into 

consideration the degree of anisotropy and the availability of cross section 

data. For the case of isotropic scatter only the first term of Equation (II-5) is 

used (L = 0) resulting in 

o8(r,Q-Q') = CT8(r). (II-7) 

This derivation will not assume isotropic scatter. Combining Equations (II-4) 

and (II-5) yields 

fi-v>(?,ä) + o(?)v|/(r,Ö)= Z (21 + l)CTai(r)JdQ'Pi(n-fi')v|/(r>Q') + s(r,Q)     (II-8) 

which can be simplified using the Legendre addition theorem (1: 367) 

P^Q • Q') = 2J^J JE Y?m(Q)Ylm(Q') (H-9) 
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where the Ylm(Q) are the spherical harmonics and the asterisks signifies the 

complex conjugate. Using this, the sum on the right hand side of Equation 

(II-8) becomes 

ZodP) SYÜn(ä) JdQ'Yim(Ö') x|/(r,Q'). (11-10) 
1=0 m=-l 

The angular integral in expression (11-10) is now just the coefficients 

resulting from the expansion of the angular flux in spherical harmonics 

L      1 
vfen)« I  I *im(?)Yhn(n). ai-ii) 

V        '     l=0m=-l ' 

with 

4>lm(r) = JdQ'Ylm(Q') v(f.O'). (H-12) 

Substituting this into expression (11-10) gives 

L      1 
E   SYim(ä)asi(r>hm(f). ai-13) 
l=0m=-l      V    ' 
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Replacing the sum in Equation (II-8) with expression (11-13) yields a form of 

the transport equation that is convenient for discretization in angle 

L      1 
fi-Vv|/(f,n) + a(f)vl/(f,ß)= £   ZYLfÖWr^^rWr,^).     (11-14) 

V        7 V       '     l=0m=-l      X    ' 

In the discrete ordinates approximation, Equation (11-14) is enforced only for 

a set of discrete directions yielding 

Qn-V¥n(f) + a(f)v|/n(f)= I    EYim^nJasi^^^ + s^Q^, (11-15) 

where \|/n(?) = \]/(r,Qn). The scalar flux is approximated by 

«r)= EwnM/n(r), (H-16) 
n=l 

and the flux moments of Equation (11-12) are approximated by 

♦ lm(?)= I wnYlm(Qn)M/n(r). (H-17) 
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By defining the right hand side of Equation (11-15) as the emission density or 

scattering source qn(f) and substituting Equation (11-17) for the flux 

moments, Equation (11-15) becomes 

Qn-Vv|/n(f) + a(f)v|/n(f) = qn(r) (11-18) 

where 

qn(rWr,Qn) + £    ZYhJänW*) I wn-Ylm(Qn,) Vn,(r)    (II-19) 
V '     l=0m=-l      X       ' n'=l 

The most common way of solving Equation (11-18) is the iteration on the 

scattering source form of Von Neuman's series solution (1: 80). The method's 

usefulness is derived from the fact that if the right side of Equation (11-18) is 

known, solving for v|/(r) is usually straightforward. The iteration is defined 

by modifying Equation (11-18) to 

[Qn-V + a(f)] V
1

n
+1(?) = q1n(5) 01-20) 

where i is the iteration index. Equation (11-19) likewise becomes 
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q1
n(f) = s(f,Qn)+ Z    EYim(^n)asi(?) I wn,Ylm(Qn,) V^(f).      (11-21) 

V '     l=Om=-l     V       ' n' = l 

The system of Equations (11-20) and (11-21) must be solved to convergence at 

each r of interest. 

Before proceeding to the methodology of choosing a quadrature set, a 

brief discussion of the spatial discretation which allows for the approximation 

of the those terms which are now function of the spatial variable only will be 

helpful. 

Spatial Discretization 

Discretization of the spatial variable in three dimensions can take 

many forms.   The most common method is to divide each of the three 

Cartesian spatial directions, x, y, and z, into i, j, and k intervals respectively 

resulting in a three dimensional grid containing i x j x k rectangular 

parallelepiped cells. Another method gaining popularity is to generate an 

unstructured mesh of tetrahedra. All cross sections are taken to be piecewise 

constant and therefore not allowed to vary inside a given cell. Various 

methods exist then to calculate the angular flux \|/n for each value of n in 

each cell given appropriate boundary conditions. THREEDANT uses 

diamond difference (DD) with negative flux fix up in a structured Cartesian 

mesh, and TETRAN has the capability of using linear characteristic (LC), 

exponential characteristic (EC) or step characteristic (SC) on an unstructured 
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tetrahedral mesh. Each of these methods and many more are discussed and 

derived in detail elsewhere (1,2,3,8,9,16). 

Consequences of Discretization 

Several problems arise when using discrete ordinates. Any time 

computations are performed on a computer, truncation errors will occur. The 

effects of truncation error will accumulate with each computation. 

Truncation errors therefore limit the accuracy achievable by computational 

methods. With each refinement of the spatial or angular mesh, the 

mathematical model more closely resembles the continuous analytical 

solution, however the number of computations also increases. Though 

truncation error associated with each calculation should decreases with mesh 

refinement, there is a limit to the accuracy gained by continued mesh 

refinement as the number of calculations gets increasingly large. This effect 

is most visible in three-dimensional problems where the number of cells 

increases as the cube of the linear refinement. Another, more systematic 

problem arises due to the angular discretization called ray effects. The 

phenomenon is most evident in problems with localized sources and small 

scattering cross sections (1:195). 

When the scattering cross section is small, a substantial percentage of 

particles traveling from a localized source to an area of interest will be 

uncollided. This will result in a peaked distribution about the discrete 

ordinates. Clearly these results are physically unrealistic. Ray effects 
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manifest as oscillations (1: 197), peaks about a region where an ordinate can 

be traced from a source region and valleys in between. As the order of the 

angular approximation increases so does the number of oscillations, which 

also tend to decrease in the amount of deviation from a smooth curve. If the 

oscillations are uniform about the correct curve, then the integral of the 

scalar flux over the boundary will still yield good results (1: 200). When the 

scattering source makes a large contribution to the scalar flux, ray effects 

tend to be mitigated. The scattering source tends to be distributed over a 

large area and is often nearly isotropic. This gives a more uniform angular 

distribution of neutrons. 

Numerical diffusion is a consequence of the spatial discretization and 

truncation errors due to spatial differencing. For example, if a beam of 

neutrons were to enter the lower left corner of a pure absorbing cube of 

material traveling along the cube diagonal, one would expect the attenuated 

beam to exit only at the upper right corner. In the spatial walk of the 

discrete ordinates calculation, each cell is considered to have a distribution of 

flux through out the cell and flux can only enter and exit the faces of the cells. 

For a mesh consisting of regular parallelepiped cells, this means the beam 

entering the cell in the bottom left corner will exit that cell through the top 

and sides. The fraction entering the adjacent cells is determined by the 

incident angle of the beam. This will continue through the spatial walk 

resulting in a smearing out of the beam. This effect, to a small extent, may 
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mitigate ray-effects. A more complete discussion of numerical diffusion can 

be found in reference 3 where is referred to as quasi-ray effect. 
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III. Method 

The primary desire when selecting a quadrature set is to maximize 

accuracy while minimizing the number of ordinates. The primary source of 

computational cost of obtaining a discrete ordinates solution to the BTE is in 

the spatial integration. A complete walk through the spatial mesh is 

required for each ordinate. Thus minimizing the number of ordinates 

reduces the computational cost by minimizing the number spatial walks 

required. Other concerns are the mitigation of numerical artifacts both 

systematic and nonsystematic such as truncation errors, ray effects, and 

numerical diffusion. With these concerns in mind, this work will present a 

method of generating simultaneous sets of polynomial equations, which 

produce quadrature sets based on exact integration of spherical harmonics. 

Quadrature sets up to order seven are presented. 

Zero Components 

The key difference in the quadratures presented here from those seen 

elsewhere is the addition of ordinates with zero components for one or two of 

the direction cosines. There have been several reasons for not using zero 

components in the past, primarily stemming from arguments in one or two- 

dimensional geometry. In these problems, vertical vector flux does not 

propagate through the problem. The infinite path length resulting from the 

reciprocal cosine term in the spatially discretized mesh must also be dealt 
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with. Discontinuity in the vector flux at a vacuum boundary can lead to 

ambiguity in the meaning of \|/Ji = O) at the boundary when using a regular 

Cartesian mesh. Also, it can be shown that \|/(u. = O) is not truly an 

independent variable when discretized in 2-D and therefore contributes little 

to the accuracy of the solution (19: 132). 

When three-dimensional quadratures are developed, they are often an 

extension of one and two-dimensional cases. The use of even order in 

traditional quadrature sets, when applied to 3-D problems has invariably 

been due to the even order used in the lower dimensional base. The use of 

diamond difference (DD) is also pervasive in old computer codes. DD codes 

will not accept zero components without special handling routines being 

developed. There is often a desire when developing quadrature sets to 

generate results that will run on the legacy codes without modification. This 

is unfortunate, as modern parallel computers are capable of handling far 

greater complexities than the computers for which these codes were 

developed. The development of computer codes capable of performing 

discrete ordinates calculations on an unstructured mesh eliminates many of 

the problems associated with special directions. More accurate characteristic 

methods of dealing with the spatial integration do not have the same 

problems dealing with zero components as the DD method. 
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Quadrature Derivation 

The derivation of these polynomial equations for the generation of 

quadrature sets is based on methodology developed by Dr. Kirk Mathews (25) 

as an extension of work by B.G. Carlson and others (5). The basic quadrature 

sets presented here are defined over the entire unit sphere, but can be 

represented in the principal octant or its edges. The principal octant is where 

the components of Q are all positive. We require the quadrature set to meet 

the total symmetry condition. Total symmetry, sometimes referred to as cubic 

symmetry, requires the quadrature set to remain invariant under all axis 

exchanges, ninety-degree rotations about a cardinal axis, and reflections 

across the x - y, x - z, or y - z planes. An axis exchange operation is the same 

as a reflection across any x = y, x = -y, x = z, x = -z, y = z, or y = -z plane. The 

discrete ordinates can be represented as points on the surface of the unit 

sphere. These points represent where the tips of the unit vectors 

corresponding to each ordinate lie on the unit sphere. A base set refers to 

those ordinates in the original hextant of the principal octant. The original 

hextant is a spherical triangle covering a one sixth area of the principal 

octant. Figure III-l shows the unit sphere with the principle octant shaded 

and an expanded view of the principle octant with the original hextant 

shaded. A complete quadrature set can be built by choosing points in any 

hextant and reflecting the points by performing successive axes exchange 
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Figure MM: Unit Sphere and Principal Octant Showing Quadrature Base Set 

Cases and Designators 

Figure 111-2: \i <-> % Exchange Operation 
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Figure 111-3: |i <-> r\ Exchange Operation 

Figure 111-4: Complete Principal Octant after % <-> ri Exchange Operation 
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operations as shown in Figures III-2 through 4 (25). The remaining ordinates 

are generated by sequential reflections across the x-y, x-z and y-z planes. 

The directions Qn constitute a discrete set of values of Q over its entire 

domain (6: 2). If y has a convergent expansion in spherical harmonics, then 

from Equations (11-15) and (11-17) we see that a necessary condition for 

choosing the ordinates and weights is that the spherical harmonic 

orthogonality condition up to the desired order be satisfied, that is 

N 

I 
n=l 

JdQYlm(n)YiV(n)= EwnYlm(Qn)Y1V(on)= 8ir8mm- (III-l) 

for all 0 < 1,1' < L, -1 < m < 1, and -1' < m' < 1' with the desired order of 

precision L. The l = l' = m = m' = 0 case provides the normalization condition 

for the weights, 

Ewn=l. (IH-2) 

We also require thatwn > 0 to reduce to possibility of obtaining physically 

unrealistic results. 

Because of the symmetry requirements and the exchangeability of 

coordinates, Equation (III-l) will be satisfied if the moments equations, 
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iydQ = Xwnl-4 , i = 0, 1, .... 2L (III-3) 
n=l 

are satisfied exactly. In Equation (III-3) i is an exponent not a superscript. 

This condition is enough to ensure that JuV^dQ will integrate exactly for 

all 0 < i,j,k < 2L with i + j + k < 2L (25). Also due to symmetry, if i, j, or k is 

odd, the integral is exactly zero. This is because the integration in Equation 

(III-l) can be represented as the integration of a product Legendre 

polynomials, which are intern polynomials of u. = cos(0), and el(m_m )(p. 

Symmetry guarantees the exponential will ingrate exactly because for every 

cpn there exists with equal weight and equal |j,n a <pn- that equals cpn +7t. 

The terms in the summation therefore cancel except when m = m', which 

results in the exponential reducing to unity. The odd powered terms are 

exactly zero because cosine integrates to zero over the range of-1 to 1. 

Finally, the case where i = 0 and the case where i = 2 are not 

independent. For the i = 0 case, Equation (III-3) becomes 

N 
Jdn = l=JTwn  . (ni-4> 

n=l 

and for the i = 2 case 
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Jn2dfl = i=iwnnn
2 • (III-5) 

ö     n=l 

Because of the symmetry requirements, the JJ,
2
 values with equal weights 

will always exist in sets of three that sum to one (this can readily be seen by 

examining the most general case (case 4) in appendix B with k = 1). Equation 

(III-5) therefore becomes 

1       N  1 
- = y -wn. (in-6) 
3    ^3 

Equation (III-6) and Equation (III-3) are not linearly independent. We can 

therefore replace the system of Equations (III-3) with 

L2kdQ = -1— = f>nuik ,   k = 1, 2, ..., L. (III-7) J 2k +1    _  , 

The system of Equations (III-7) may have a solution or solutions providing 

the number of equations, L, is equal to the total number of free parameters 

(degrees of freedom): the total number of independent values for wn and \in 
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It is important to make clear that the criteria used for the selection of 

a quadrature set is that it will evaluate, without quadrature error, integrals 

of the sort 

JY!*m(Q)f(Q)dQ 

for any N > 1; which means 

JYL(Q)YFm,(Q)dQ 

must integrate with out error. This is why Equation (III-3) requires IJ,
1
 to 

integrate exactly for i = 0 to 2L. Symmetry assures getting all the odd 

powers exactly while the degrees of freedom in the weights and angles are 

used to get the even powers. Thus five degrees of freedom integrate the 

coefficients of a fifth order expansion. P5 anisotropic scatter needs this order 

of expansion. Chapter II discusses the expansion of the scattering cross 

section. With highly anisotropic scattering, a high order expansion may be 

needed to get accurate results. This requires the discrete ordinates order to 

be at least as high. Computational efficiency with highly anisotropic 

scattering therefore becomes of even greater concern. Therefore, obtaining 

the desired order of expansion with fewer ordinates is very desirable. 

The objective is then to use the most reasonable value of L and 

minimize N, maintain total symmetry, and produce accurate transport 

results. The desired (or available) precision of the arithmetic, computation 

cost, and the order of the Legendre expansion of the scattering cross section 

will determine the most reasonable value of L. 
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Figure III-4 shows the principle octant and the various possible cases 

for points to be located and satisfy all symmetry requirements. The four 

cases not on the edge of the octant correspond with the cases 1 through 4 

presented by Carlson (5) and have 1, 3, 3, and 6 points in the octant (hence 8, 

24, 24, 48 points on the unit sphere) with 1, 2, 2, and 3 degrees of freedom 

respectively. The three additional cases, A, B, and C, are shared by two or 

more octants. Case A points are on a primary axis. Case B points are in a 

zero plane with the remaining two components equal. Case C points are in a 

zero plane but the remaining two components are not equal. There are a 

total of 6, 12, and 24 points over the unit sphere with 1, 1, and 2 degrees of 

freedom for cases A, B, and C respectively. Table III-2 provides a summary of 

pertinent information regarding each case. 

Table 111-1: Summary of Quadrature Case Data 

Case Total Points on 

Unit Sphere 

Degrees of 

Freedom 

Parameters to 

be Determined 

Ordinates per 

Degree of Freedom 

1 8 1 w 8 

2 24 2 w,|a 12 

3 24 2 w,|a 12 

4 48 3 w,|i,r) 16 

A 6 1 w 6 

B 12 1 w 12 

C 24 2 w,ja 12 
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Cases A and 1 have the fewest ordinates per degree of freedom and are 

therefore preferred. Case 4 is the most expensive and also the most difficult 

to calculate and is to be avoided. The remaining cases are equivalent in this 

regard. 

To distinguish these quadrature sets from those previously developed 

the notation MQn is adopted for a quadrature of order n. To uniquely solve for 

a quadrature set of order n, the total degrees of freedom in the equation set 

used must also equal n. This is accomplished by selecting a combination of 

cases from Table III-l such that the sum of the degrees of freedom equals n. 

Equation (III-7) is then used to determine the free parameters. Care must be 

taken to uniquely identify the quadrature being referenced because there 

may be multiple quadrature sets of the same order.   For example, to find an 

MQ5 quadrature case 1 + case 2 + case A + case B will provide the needed 

degrees of freedom. A different MQ5 quadrature results from selecting case 4 

+ case C. Further discussion of notation is presented later. 

When selecting the cases, those cases with no free angles may only be 

selected once; otherwise a case may be used multiple times. Each free 

parameter must be uniquely identified. For example, for case 3 + case 3 + 

case A, the free parameters would be {(w3,|i3,Ti3),(,W3',H3',r|3'),(wA)} 

resulting in an MQ7 quadrature. 

Because for each case only one point on the sphere is independent, the 

others resulting from exchange and reflection operations, we are able to write 
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a set of equations for each case that depends only on the free parameters of 

that point. This series of equations is then inserted into the system of 

Equations (III-7). For case 1, m = TU = ^ = -= in the primary octant with 

wj to be determined and a total of eight points over the sphere. Therefore, 

the contribution of case 1 to Equation (III-7) is 

Wj 
f i   "\ 2k    f      -x2k f i  A 

V3j      W3y      w3y      W3 

2k r x\^   r A2k    f 

+ 
V3 

A2k    f     1 ^2k    A 

V§ v ^°y 

1 
A/3 

x2k 

V   "voy 
:8Wl 

/^\k 

k=l,2,...,L. (III-8) 

The contributions of the other cases are found analogously. A complete 

derivation of each case is given in Appendix A and is summarized in Table 

III-2. Note that cases 2 and 3 have the same form of contribution equation. 

If the angle solved for is less than— then this is a case 2 ordinate and the 
V3 

angle is [i, if the angle is greater than-= then a case 3 ordinate results and 
A/3 

the angle is r\. The column labeled "Cosines" gives the equations or values 

needed to find the initial (p,  r\,  £,) triplet. The rest of the quadrature is then 

generated by the operations described previously. As an example, for the 
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Table 111-2: Contribution of Each Case to Equation (111-7) 

Case 

B 

Contribution 

8wi 

8w< H2     +2 

«        2        , v y 

8wc 2k   ,  o tl3       +2 
f-, 2^ 

1-T13 

V y 

16w, ^4 
tt
+t-H42-H42N^ 

2k 

2w A 

8w B 

8wf He 
2k 

+ (l-^c2)k 

Cosines (p,  r|,  £] 

f^2> 
1-^2 /I — M-2 

1-T1J 
Tl3. 

1-TIJ 
>   Ma» 

H4 ,    Tl4,    V1_^42 -*!< 

( i, o, o) 

V2'   ' V2. 

He , 0,   TJ1-\IC 

MQ5 quadrature using case 1 + case 2 + case A + case B, the following 

equations result 
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r-i\k 

2wA + 8wB 
v2y 

+ 8wi + 8w? 
2k   , o 

\i2     +2 1-^2 
2^ 

k = 1, 2, 3, 4, 5. (III-9) 

These equations were entered into a Mathematica™ (20) notebook and solved 

using built-in functions. A listing of the notebook is found in Appendix B. 

The solution for Equations (III-9) is shown in Table III-3. Including all 

unique permutations of the cosines will complete the principal octant. For 

example, there are two additional case A ordinates with the same weight as 

the one shown and having cosines (0, 1, 0) and (0, 0, 1) respectively. There 

are no additional case 1 ordinates as there are no more unique permutations 

of the cosines. Figure III-3 shows the distribution of these points on the 

principal octant. Both the exact solution and the decimal fractions of the 

weights are given. The weights are all positive, as required, which reduces 

the likelihood of physically unrealistic results such as negative flux. They are 

also similar in magnitude, providing for better conditioning of the problem. 

From Table III-l we see that there are fifty total directions and five degrees 

of freedom for this quadrature. For comparison, an LQio quadrature also has 

five degrees of freedom but has 120 total directions over the unit sphere 

requiring 2.4 times the computational cost (assuming both calculations 

converge in the same number of iterations). The LQ6 level symmetric 

quadrature has 48 directions but only three degrees of freedom. Table III-3 
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also gives the base sets for an MQ3 and an MQ7 quadrature set. Table III-4 

shows the number of discrete ordinates required to obtain a desired number 

of degrees of freedom for various MQn and LQn quadrature sets. 

c 

A, 

A f 

\ 1/     \ 

Ä 
0                       \                          J^             1 

Figure 111-5: Example MQ5 Quadrature Layout 
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Table 111-3: Some Possible MQn Quadrature Base Sets 

Order Class weight H r\ % 

n = 3 A 
1/21 
.047619047619 

1 0 0 

B 
9/280 
.0321428571429 

1/V2 0 I/V2 

1 
4/105 
.0380952380952 

lA/3 1/V3 lA/3 

n = 5 A 
4/315 
.0126984126984 

1 0 0 

B 
64 / 2835 
.0225749559083 

1/V2 0 1/V2 

1 
27 /1280 
.0210937500000 

lA/3 ]A/3 1/V3 

2 
14641 / 725760 
.020173335379 

3/Vll l/Vn l/vrr 

n=7 A .00904818883016 1 0 0 

B .02103246043743 1/V2 0 1/V2 

C .00645149153857 .954580866940172 0 0.29795195665031 

1 .01827941392342 1/V3 1/V3 iA/s 

2 .01634375972737 .875317087598172 .34192104070871 .34192104070871 

Table 111-4: Comparison of Computational Cost of MQn versus LQn 

Degrees 
of 
Freedom 

MQn Cases 
Used 

LQn 
Required 

MQn: Total 
Number of 
Ordinates on 
Unit Sphere 

LQ«: Total 
Number of 
Ordinates on 
Unit Sphere 

1 A S2 6 8 

3 A,B, 1 s6 26 48 

5 A, B, 1, 2 Sio 50 120 

7 A, B, C, 1, 2 Sl2 / Sl4* 74 168 / 224 
9 A, B, 1, 2, 4 Sl6 110 288 
*Si2 only has six degrees of freedom and Sw has eight. No level symmetric Sn 

quadrature has 7 degrees of freedom. 

For the MQ7 quadrature in Table III-3, the exact values are not given, 

because Mathematica was not able to solve this set of equations exactly. 

Instead a numerical solutions was obtained using a numerical solving built- 
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in, NSolve. As the order of the quadrature increases the complexity of the 

polynomial system of equations increases substantially. Only for the lowest 

order quadrature sets was I able to obtain exact solutions. 

These quadrature sets were tested with a computer algorithm to verify 

they met the orthogonality condition in Equation (III-l) to double precision. 

Many more combinations of cases are available than are presented here. 

Quadrature sets can be tailored using Table III-2 and Equation 3 to best fit 

the geometry of the problem. Appendix C shows several additional 

quadrature sets. 

Generating the sets of equation to solve is a straightforward matter, 

solving them is often a challenge. Some of the equation sets do not have real 

solution that I have been able to find. The requirement of positive weights 

also eliminates some possibilities. Appendix B contains some of the work I 

did in attempting to get valid quadrature sets. Table III-6 summarizes a 

significant number of possible quadrature set combinations and the results of 

my efforts. Only those combinations using at least one of the new cases are 

shown. The "2(3)" notation in the Cases column is intended to show that the 

resulting equations when selecting a case 2 or a case 3 are mathematically 

equivalent as discussed above. An entry in the results column of one valid 

found means a valid quadrature set was found for the resulting system of 

equations, no valid means all the solutions had either negative weights, 

imaginary values or cosines greater than one. No solution means that the 

111-17 



system of equations did not provide any solutions, good or bad. Empty spaces 

are quadrature combinations I have not tried and those marked with "tried", 

means they were attempted, but I was unable to solve the equations. The 

letters in the order column are a method to distinguish different quadratures 

of like order, for example M5b. Valid quadrature sets are presented in 

Appendix C 

Table 111-3: Case Combination for Quadrature of Order n 

Order Cases Results 
3 a AB1 One valid found 

b Cl One valid found 

c AC No solution 

d BC No solution 

5 a AB12(3) One valid found 

b AC2(3) One valid found 

c BC2(3) One valid found 

d C4 One valid found 

e ABC1 No solution 

f C12(3) No valid 

£ AB4 Tried 
h A23 
i B23 

i A13 
k B13 

7 a ABC 12(3) One valid found 
b AC23 One valid found 

c ABC4 Tried 
d AC14 
e AB 14 Tried 
f AB42(3) 

£ AB123 No valid 

9 a ABC123 Tried 
b ABC2(3) 4 Tried 
c Etc. 

III-18 



Though trial and error can yield valid quadrature sets it may be 

possible to gain some direction when selecting the cases to use. Since the 

method is based on the exact integration of spherical harmonics, selecting 

cases based on features of the spherical harmonics of the order being matched 

may yield systems of equations that are more readily solved. Figure III-6 

(12) shows the first few spherical harmonics. 

Figure 111-6 :Spherical Harmonics, Yim(0,<|>) 

The three quadratures show in Table III-3 where tested and compared 

with level symmetric quadratures. These quadratures were chosen because 

they are the sets with the fewest ordinates for the given order. Also they 
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have ordinates which are reasonable dispersed over the unit sphere and the 

weights are all about the same order of magnitude. The MQsa quadrature 

was shown in Figure III-5, the MQ3a and MQ7a quadrature sets are shown in 

Figures III-7 and III-8. 

0 

1 

'      \       y^   rt 

Figure 111-7: MQ3a Quadrature Layout 
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Figure 111-8: MQ7a Quadrature Layout 
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IV. Results 

is a 

ray 

Some of the new quadrature sets were tested on two problems and 

compared with the level symmetric LQn quadratures. The first problem i 

cube source inside a cube shield region and was designed to exacerbate rs 

effects. The second problem is a spherical source region in a spherical shield. 

This problem was selected to reduce ray-effects. Due to the symmetry of this 

problem, the solution should also by symmetric; therefore any deviation from 

smooth behavior must be due to the method of calculation. Each test problem 

was run on the TETRAN code using the linear characteristic (LC) method for 

handling the spatial computations. The MQ3, MQ5, and MQ7 quadrature sets 

from Table III-3 are compared with the standard LQ4, LQ10, and LQ16 level 

symmetric quadrature sets. For brevity, no letter subscript will be used with 

the MQn quadratures. Each problem was also run on the THREEDANT 

module of the DANTSYS code package using Diamond Difference with 

negative flux fix-up (DZ). Some quadratures with zero ordinates would cause 

the code to produce nan (not a number) values for some of the output. The 

case A ordinates did not cause problems, but the case B and C would. The 

input file for THREEDANT requires \i, r\, and the weights to be entered. 

The program calculates the value of £,. For the case B and C ordinates, when 

% should be zero, instead a nan would be reported. Error handling routines 

prevent the code from failing but the output is not useful. By reducing the 

precision of the quadrature angles input into THREEDANT, the code does 



run and provide output. Presumably because the value of \, though very 

near zero, is sufficiently large so as not to cause problems. 

In order to overcome the limitations of THREEDANT with regard to 

the expectation that the ordinates not lie on the edges of an octant and to the 

total number of directions in a quadrature set, it was necessary to make 

further modifications. THREEDANT defines a quadrature only in the 

principle octant, the remaining angles generated by reflection operations. 

This also requires the weights that should lie on a boundary to be divided by 

the number of octants among which it is shared. For example, in order for 

the normalization of the weights to be correct the weight of a case B or C 

ordinate must be divided by two. Also, the number of ordinates in a 

quadrature must match the number of ordinates expected. The variable isn 

in the input file must be set to the value of n for the LQn quadrature intended 

for use (there are provisions for other quadrature types not of relevance 

here). The LQn level symmetric quadratures are selected by default if no 

quadrature information is given. If a quadrature set is entered, the number 

of ordinates supplied for the principle octant must match the number in a 

LQn quadrature for the value of n supplied. This number is given by 

N = n(n + 2) / 8. For the MQ3 quadrature there are seven angles in the 

principle octant. The closest LQn quadrature with at least that many 

ordinates is LQs with ten ordinates. Therefore, to run the MQ3 quadrature, 

the variable isn must be set to eight and the first seven ordinates in the 
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quadrature array are filled with the MQ3 values. The remaining three slots 

in the quadrature array are fill with dummy angles with the weights set to 

zero. This fix will maintain the quadrature set's ability to integrate properly. 

The disadvantage of this fix is a loss of computational efficiency because the 

code still has to perform computations using the dummy values that do not 

contribute to the solution. Valid comparisons of computational efficiency 

between the MQn and LQn sets using THREEDANT are therefore limited. 

The TETRAN calculations were performed on the IBM SP located at 

the major shared resource center (MSRC) of Wright Patterson AFB. These 

problems were run on a single node, consisting of an RS/6000 P2SC model 

595 processor with a clock speed of 135MHZ and 1Gb of memory (23). The 

THREEDANT code was run on an IBM RS-6000/590 workstation using the 

AIX 3.2.5 operating system with 256 Mb of memory and operating at 67MHz. 

The convergence tolerance for each problem was 106. 

A benchmark solution was obtained for each problem using a Monte 

Carlo simulation generated with MCNP (15). MCNP is a general three- 

dimensional simulation code widely used and accepted. MCNP results are 

the average of the computed quantity over all histories. Each history is a 

simulation of one particle's motion through the media. MCNP also provides 

the estimated statistical relative error, R, at the one standard deviation level 

defined as the sample standard deviation divided by the sample mean. 
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Problem Definition 

The cube problem uses the geometry shown in Figure IV-1. The mesh 

shown is for clarity and not used in calculation. This problem is a three- 

dimensional extension of the two-dimensional problem presented by Lathrop 

(21) and discussed in references 1 and 3. The source region is a 2x2x2 cm 

Figure IV-1: Geometry for the Cube in Cube Problem 

cube centered in a 4x4x4 cm cube with the source normalized to one over the 

source volume. The second problem, shown in Figure IV-2, is a spherical 

source region in a spherical shield region. Problem two used a source region 

with a radius of 1.5 cm normalized to one over the volume and a shield region 

with a radius of 3 cm. Figure IV-2 shows the finest tetrahedral mesh used 

with TETRAN.   The source and shield regions have the same nuclear data 
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for all test problems. Vacuum boundaries are used outside all shield regions. 

3 
The total cross section, at, is — cm"1 with a scattering to total cross section 

Figure IV-2: Geometry for the Sphere in Sphere Problem 

ratio of — = —. This results in a mean free path of — cm. The MCNP 
crt      3 3 

benchmark solution gives the volume average scalar flux in each region, the 

average scalar flux at the outer surface and the net current through each 

surface. 

Test Problem One - Cube Source in Cube Shield 

The first test problem is a simple 4x4x4 cm cube with vacuum 

boundaries and a uniformly embedded isotropically-emitting source of 

strength 1.0 cm3 sec1. The source is constrained to the 2x2x2 cm center 
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region of the cube. The nuclear data is given above. The MCNP solution for 

this problem was run with one million histories. The statistical relative 

error, R as defined above, is .003 for surface data and .0007 for volume data. 

Tetrahedral Mesh 

Each tetrahedral mesh was generated using the Pro/Mesh module of 

Pro/Engineer (22). This problem was run with two levels of mesh refinement. 

The meshes are shown in Figure IV-3. Table IV-1 gives the tetrahedral mesh 

information for test problem one. For clarity, only the surface cells are show 

for the fine mesh. 

Figure IV-3: Tetrahedral Meshes Used in Test Problem One 
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Table IV-1 : Tetrahedral Mesh Data for Test problem One 

Mesh Total 
Tetrahedra 

Cells in 
Source Region 

Net Volume of 
Source Region 

Average Optical 
Thickness 

Coarse 191 47 8.0 1.203 

Fine 1513 162 8.0 0.5997 

For a right regular problem geometry the tetrahedral mesh does very 

well in matching the region volumes, even with a relatively coarse mesh. 

Here the average optical thickness is defined as the mean path length 

through a cell measured in mean-free paths. The accuracy of each 

quadrature relative to the benchmark will be examined first. 

Figure IV-4 shows contour plots of the surface average scalar flux for 

the coarse mesh for the MQ7 and LQie quadrature sets. Figure IV-5 shows 

the same data for the fine mesh. The plots of the other quadrature sets are 

very similar and are not shown. The TETRAN code gave the scalar flux at 

the center of each cell and at the surface of each cell on the boundary. To 

generate these plots it was necessary to have values at the nodes. Each node 

value was approximated as the average of the cell center values for each 

tetrahedron shared by that node. This averaging may effect the variability of 

the actual surface data. Also from these figures, the flux distribution's 

dependence on cell geometry and orientation is very evident. These contour 

plots show little dependence on quadrature. Contour plots of the net current 

out the cell faces at the surface are very similar to those for the scalar flux 
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and are not presented. These plots indicate that the new quadratures do not 

cause any significant loss in uniformity and that it is the spatial mesh which 

is the primary source of surface variation in scalar flux and current. The 

variability of the data does decreases slightly with quadrature order. For low 

order quadrature sets the LQn sets have less variability than the MQn sets 

but this difference is minor. Using the tetrahedral mesh, it is very difficult to 

get a qualitative comparison of quadrature sets using individual data points. 

The integral values provide a clearer method of comparison. 

FLUX 
0.221235 
0.208343 
0.195451 
0.182558 
0.169666 
0.156773 
0.143881 
0.130988 
0.118096 
0.105204 

Figure IV-4: Contour Plot of the Surface Average Scalar Flux, Cube Problem, 

Coarse Tetrahedral Mesh 
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FLUX 
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0.1285 
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0.1055 
0.094 
0.0825 
0.071 
0.0595 
0.048 
0.0365 MQ7 

^>\ v. 

A#, ■£.  _    s; 
1 4" /■■ ■v. X 
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Figure IV-5: Contour Plot of Surface Average Scalar, Cube Problem, Fine 

Tetrahedral Mesh 

The surface average scalar flux for each quadrature and mesh are 

shown in comparison with the MCNP benchmark calculation in Figures IV-6 

and 7. The surface average is calculated as the sum of the product of the flux 

at the vacuum interface of a surface cell and the area of that cell's face 

divided by the total surface area, 
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I>cellA cell 
cells on surface 

surface average ZA, Lcell 
cells on surface 

The net current out of the cube is similarly shown in Figures IV-8 and 9. The 

benchmark is shown with error bars indicating the statistical error R. With 

the exception of the surface flux calculation for the fine tetrahedral mesh, 

these plot show there is little significant difference in the accuracy achieved 

by the quadratures tested. 
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O ■ 
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0.0520 

Quadrature vs. Surface Average Scalar Flux, 
Cube Problem, Coarse Tetrahedral Mesh 

MQ3        MQ5 MQ7        LQ4 
Quadrature Set 

LQ10       LQ16 
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D 

Figure IV-6: Surface Average Scalar Flux, Cube Problem, Coarse Tetrahedral 

Mesh 
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Figure IV-7: Surface Average Scalar Flux, Cube Problem, Fine Tetrahedral Mesh 
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Figure IV-8: Net Current Through the Surface, Cube Problem, Coarse 

Tetrahedral Mesh 
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Figure IV-9: Net Current Through the Surface, Cube Problem, Fine Tetrahedral 

Mesh 

The absolute value of the relative error, e, is defined as 

s = 
Y benchmark     Y calculated | 

Y benchmark 

(IV-1) 

The absolute value of the relative error for the current is found analogously 

to the flux. The flux, current, and relative error are summarized in Tables 

VI-2 and 3 for test problem one. The value for s given for the MCNP entry is 

actually the statistical error R and is shown for reference. 
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Table IV-2: Surface Average Scalar Flux, Net Current, and Relative Error, Cube 

Problem, Coarse Tetrahedral Mesh 

Quadrature Scalar Flux 8 Net Current 8 

MQ3 0.054461034 0.05100 0.039715347 0.004732 

MQ5 0.054827230 0.04462 0.039796675 0.002693 

MQ7 0.054314746 0.05355 0.039788637 0.002895 

LQ4 0.054765258 0.04570 0.039818522 0.002146 

LQio 0.055312273 0.03617 0.039825301 0.001976 

LQi6 0.055447146 0.03382 0.039821360 0.002075 

MCNP 0.05739 0.003 0.03990 0.003 

Table IV-3: Surface Average Scalar Flux, Net Current and Relative Error, Cube 

Problem, Fine Tetrahedral Mesh 

Quadrature Scalar Flux 8 Net Current 8 

MQ3 0.054574800 0.04902 0.03969063 0.005351 

MQ5 0.055480478 0.03324 0.03989043 0.0003442 

MQ7 0.054711298 0.04664 0.03986661 0.0009411 

LQ4 0.055361991 0.03530 0.03998596 0.002050 

LQ10 0.057121652 0.004641 0.03995183 0.001194 

LQ16 0.057210746 0.003090 0.03992792 0.000595 
MCNP 0.05739 0.003 0.03990 0.003 

For the surface values the LQn quadratures have slightly better accuracy. 

The difference in relative error between quadrature sets tested is small for 

the coarse cube. In the fine cube the LQn quadrature sets do better for scalar 

flux but the MQ5 and MQ7 provide comparable results for net current. 

Figures IV-10 - 13 show the volume average scalar flux in each region 

and quadrature with the MCNP solution. The volume average is calculated 
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as the sum of the product of cell flux and cell volume divided by the total 

region volume, 

average 

/ ;T cell V cell 
cells in region 

lvcell 
cells in region 

The source and shield regions are shown. Tables IV-4 and 5 summarize this 

data as well as present the relative error. 

Quadrature vs. Volume Average Scalar Flux, 
Shield Region, Cube Problem, Coarse Tetrahedral Mesh 
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Figure IV-10: Volume Average Scalar Flux, Shield Region, Cube Problem Coarse 

Tetrahedral Mesh 
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Figure IV-11 Volume Average Scalar Flux, Shield Region, Cube Problem, Fine 

Tetrahedral Mesh 
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Figure IV-12: Volume Average Scalar Flux, Source Region, Cube Problem, 

Coarse Tetrahedral Mesh 
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Quadrature vs. Volume Average Scalar Flux, 
Shield Region, Cube Problem, Fine Tetrahedral Mesh 
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Figure IV-13: Volume Average Scalar Flux, Source Region, Fine Cube 

Table IV-4 : Volume Average Scalar Flux and Reletive Error, Cube Problem, 

Coarse Tetrahedral Mesh 

Quadrature Region Volume Average 
Scalar Flux 

MCNP Benchmark 
+/- .07% 

Relative 
Error 

MQ3 Source 0.9490771 0.93175 0.018596 
Shield 0.1635121 0.16466 0.0069711 

MQ5 Source 0.9269118 0.93175 0.0051926 
Shield 0.1661212 0.16466 0.0088739 

MQ7 Source 0.9291961 0.93175 0.0027409 
Shield 0.1658497 0.16466 0.0072253 

LQ4 Source 0.9096752 0.93175 0.023692 
Shield 0.1684340 0.16466 0.022920 

LQio Source 0.9191761 0.93175 0.013495 
Shield 0.1670303 0.16466 0.014395 

LQi6 Source 0.9209707 0.93175 0.011569 
Shield 0.1668003 0.16466 0.012998 
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Table IV-5: Volume Average Scalar Flux, Fine Mesh 

Quadrature Region Volume Average 
Scalar Flux 

MCNP Benchmark 
+/- .07% 

Relative 
Error 

MQ3 Source 0.9544397 0.93175 0.024352 

Shield 0.1629156 0.16466 0.010594 

MQ5 Source 0.9324943 0.93175 0.00079882 

Shield 0.1646805 0.16466 0.00012450 

MQ7 Source 0.9346356 0.93175 0.0030970 

Shield 0.1645381 0.16466 0.00074031 

LQ4 Source 0.9160339 0.93175 0.016867 

Shield 0.1663769 0.16466 0.010427 

LQ10 Source 0.9252458 0.93175 0.0069806 
Shield 0.1652950 0.16466 0.0038564 

LQ16 Source 0.9269132 0.93175 0.0051911 
Shield 0.1652210 0.16466 0.0034068 

The MQn quadrature set performed better than the LQn quadrature 

set for the volume average data in all but the MQ3 case on the fine mesh. 

Computational efficiency was measured as the user time on the IBM 

SP taken to solve the problem. Table IV-6 shows the user time for each 

quadrature and each mesh. Recall the convergence tolerance for all problems 

was 10"6. 

Table IV-6 :User Time in Seconds Taken to Solve the Cube in Cube Problem 

Quadrature Coarse Mesh 
(sec) 

Iterations to 
Convergence 

Fine Mesh 
(sec) 

Iterations to 
Convergence 

MQ3 9.51 20 96.75 20 

MQ5 18.43 19 187.55 20 

MQ7 26.73 19 274.3 20 

LQ4 9.58 19 92.77 20 

LQ10 48.15 19 459.17 20 

LQ16 116.75 19 1100.61 20 
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For these quadratures to be of value, they must provide increased 

computational efficiency while maintaining comparable error, or they must 

provide increased accuracy in comparable time. Figures IV-14 through 17 

show plots of user time versus the absolute value of relative error for the 

surface average scalar flux and net current through the surface. Data points 

nearer to the origin represent better performance. For these surface 

averaged values the LQn quadrature sets perform better on this problem 

except for the current through the surface on the fine mesh, where the MQ5 

and MQ7 quadratures perform well. Figures IV-18 and 19 show the volume 

average scalar flux versus relative error. The MQn quadrature sets have 

consistently better performance, providing less error for the computation cost 

in all cases except for the MQ3 on the fine mesh. These plots clearly show the 

savings in computational costs while maintaining accurate transport results. 
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User Time vs. Relative Error Surface Curent 
Cube Problem, Coarse Tertrahedral Mesh 
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Figure IV-16: Computational Efficiency, Surface Current, Cube Problem Coarse 
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User Time vs. Relative Error of Volume Average Scalar Flux 
Cube Problem, Coarse Tetrahedral Mesh 
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Figure IV-18: Computational Efficiency, Volume Average Scalar Flux, Cube 
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Parallelepiped Mesh 

This problem was run with one mesh. The mesh is 16x16x16 cells in the 

principal octant. Reflective boundaries were used on three sides. This 

results in a 2x2x2 cm cube which is one corner of the test problem containing 

one eighth of the volume. The solution to the remaining seven eighths of the 

problem is assumed to be the same by symmetry. The source is normalized to 

.125 over this source volume which is one eighth of a complete source cube. 

Data for the parallelepiped mesh is shown in Table VI-7. The volumes of the 

regions are easily conserved with this meshing method. The number in 

parenthesis in the volume column is for an equivalent volume if reflective 

boundaries had not been used. 

Table IV-7 : Parallelepiped Mesh Data 

Total Cells 

4096 

Cells in Source 
Region  
512 

Net Volume of 
Source Region 
1.0 (8.0) 

Optical 
Thickness 
.09375 

Figure IV-20 shows a contour plot of the cell center scalar flux for the 

base layer of cells (Z= .125 cm plane) using each quadrature set. The flux 

shows a significant dependency on quadrature for this mesh. The MQ3 case 

shows a very pronounced ray effect. The higher order quadrature sets show 

better behavior. 
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Figure IV-21 shows a comparison of the flux at the top layer of cells (Z = 

1.875 plane). Each successively lower line represent a step of one cell width 

in the positive y direction starting at y = .125. The lower order MQn 

quadratures display a substantial drop in flux when crossing from the source 

to shield region. This is still evident in the MQ7 quadrature but is not as 

pronounced. This is evidently a ray effect due to the ordinates perpendicular 

to the axes. Figure IV-22 shows the volume average scalar flux for each 

quadrature compared with the MCNP benchmark. All quadrature sets 

performed well, with error less than one percent except for LQ4. MQ5 and 

LQ16 performed very well, both with error less than 0.1 percent. The net 

current through the surface for each quadrature and the MCNP solution are 

plotted in Figure IV-23. This data is summarized in Table IV-8 with the 

relative error for each quadrature. 

Table IV-8: Parallelepiped Cube Data Summary 

Quadrature Flux 8 Net Current 8 

MQ3 0.2622893 0.0066899 0.059428 0.489260 
MQ5 0.2607804 0.0008985 0.059805 0.498714 

MQ7 0.2609637 0.0016024 0.059759 0.497565 
LQ4 0.2558341 0.0180855 0.061041 0.529702 

LQ10 0.2601124 0.0016650 0.059972 0.502898 

LQ16 0.2604749 0.0002739 0.059881 0.500627 

Figures IV-24 and 25 shows the relative error vs. computation time. 

The lines were added for clarity connecting the MQn and LQn quadratures 

with separate lines by increasing order. When using the THREEDANT code 
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with these quadratures the convergence time is not as direct a function of the 

number of angles in the quadrature set as it is when using TETRAN. This is 

primarily due to the added dummy angles required. For Example, both the 

MQ3 and MQ5 quadrature used isn = 8, requiring the input of 10 ordinates. 

For the MQ3 case, three of the ordinates were dummy values with zero 

weights but for the MQ5 all ten ordinates are used. The MQ? quadrature 

used isn = 12, requiring 21 ordinates, five of which were dummy values. In 

addition, since THREEDANT uses quadrature sets input by octant, 

redundant calculations are made for the case A, B, and C ordinates that lie 

on octant boundaries. Despite this, the MQn quadratures still seem to have 

better computational efficiency when examining integral values. Table IV-9 

shows the computation times for each quadrature sets. 

Table IV-9 : Time by Quadrature, Parallelepiped Mesh, Cube Probelem 

Quadrature Time (sec) Iterations to 
Convergence 

MQ3 3.6 10 
MQ5 3.03 8 
MQ7 11.49 8 
LQ4 1.91 9 
LQ10 5.56 8 
LQ16 24.39 8 
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Test Problem Two - Spherical Source in Spherical Shield 

The second test problem is a 3 cm radius sphere with vacuum 

boundaries and a uniformly embedded isotropically emitting source of 

strength 1.0 cm3 sec1. The source is constrained to a 1.5 cm radius sphere in 

the center. The nuclear data is the same as the previous problem. The same 

computer systems and convergence tolerance that were used in problem one 

were used for problem two. 

Tetrahedral Mesh 

This problem was run with three levels of mesh refinement. The 

structure for each mesh is shown in Figure IV-26. Table IV-10 gives the 

tetrahedral mesh information for test problem two. The volumes shown are 

the sums of the tetrahedron volumes in each region. This is compared with 

14.14 and 98.96 cm-3 for an actual spherical volume. For curved geometry the 

Table IV-10 : Tetrahedral Mesh Data 

Mesh Total 
Tetrahedra 

Cells in 
Source 
Region 

Mesh Volume 
in Source 
Region (cm3) 

Mesh Volume 
in Shield 
Region (cm3) 

Average 
Optical 
Thickness 

Coarse 211 14 5.885 82.24 1.1317 

Medium 896 152 11.69 93.48 0.84944 

Fine 6632 2033 13.74 96.46 0.40539 

tetrahedral mesh does not conserve volume very well until a very fine mesh is 

used. This is a fault in the design of mesh generators. They are usually used 
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for finite elements mechanics calculations where volume is not an issue. 

Figure IV-27 shows the source region for the coarsest mesh. This figure 

shows how difficult it is to mesh curved regions. The accuracy of each 

quadrature will again be examined first. 

Figure IV-27: Source Region for Sphere Problem, Coarse Mesh 

Figure IV-28-30 shows contour plots of the surface average scalar flux 

at the surface layer of tetrahedra for each mesh and various quadrature sets. 

Due to the similarity of the plots, not all of the quadratures are presented. 

The same method of node averaging was used to present this data. These 

contour plots also show little dependency on quadrature. To better show the 

quadrature dependence, Figure IV-31 shows contour plots of the fine sphere 

using MQ3 and LQ16 quadrature sets, looking from the -x, x, and z directions 
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respectively. The orientation can be seen from the standard arrowhead O, 

signifying the positive direction is out of the page, or tail ®, signifying the 

positive direction is into the page, notation at the origin of each plot. Also 

from this figure, an unusual asymmetry can be seen. There is a biasing in 

the positive x direction. This appears to be due to a problem in the TETRAN 

code that is currently under investigation. The degree of variability in the 

surface average scalar flux can be seen in Figure IV-32. This figure shows 

the TETRAN calculated surface flux arbitrarily ordered by magnitude for the 

medium mesh. Due to the symmetry of the problem the actual flux should be 

uniform over the surface. The shape of this curve remains the same as the 

mesh is made more or less refined, however the magnitude of the peak 

increases to about .11 for the coarse mesh and decreases to about .065 for the 

fine mesh. These plots are not shown. Figures IV-33 shows the net surface 

current in the same manner as the scalar flux. This data is ordered by the 

magnitude of the scalar flux to allow comparison with the previous figure. 

The current and scalar fluxes have similar trends but do vary independently. 

Only the MQ7 and LQie data is presented here, the other quadratures have 

similar behavior. 
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Figure IV-28: Contour Plot of Surface Average Scalar Flux, Sphere Problem, 

Coarse Tetrahedral Mesh 

Figure IV-29: Contour Plot of Surface Average Scalar Flux, Sphere Problem, 

Medium Tetrahedral Mesh 
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Figure IV-30: Contour Plot of Surface Average Scalar Flux, Sphere Problem, 

Fine Tetrahedral Mesh 
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The surface average scalar flux and net current through the surface 

show little dependence on quadrature. Figure IV-34 shows this for the scalar 

flux on the coarse sphere. The small differences in accuracy can be seen in a 

plot of relative error versus quadrature as shown in Figures IV-35-37 for the 

scalar flux. Plots of the net current are similar and are not presented. 

Regardless of mesh, the quadratures have comparable performance in 

approximating the surface values. The relative error for this geometry is 

much larger than for the cube problem above. This is primarily attributed to 

the poor job the mesh does in matching the curved surfaces. Though the MQn 

sets do appear to have less error for the surface flux on the coarser two 

meshes, the difference is small and, as can be seen from Figure IV-34, has 

little significance. This information is summarized in Tables VI-11-13. 

Table IV-11: Surface Average Scalar Flux and Net Current, Sphere Problem, 

Coarse Tetrahedral Mesh 

Quadrature Scalar Flux e Net Current s 

MQ3 0.072776076 0.2663 0.05724275 0.2363 

MQ5 0.072876460 0.2681 0.05722983 0.2360 

MQ7 0.072896331 0.2684 0.05722878 0.2360 

LQ4 0.072993465 0.2701 0.05720223 0.2354 

LQio 0.073059529 0.2712 0.05723194 0.2360 

LQ16 0.073047543 0.2710 0.05723134 0.2360 

MCNP 0.05747 0.003 0.04630 0.003 
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Table IV-12: Surface Average Scalar Flux and Net Current, Sphere Problem, 

Medium Tetrahedral Mesh 

Quadrature Scalar Flux s Net Current s 

MQ3 0.062842334 0.0935 0.05024186 0.0851 

MQ5 0.062996823 0.0961 0.05027019 0.0857 

MQ7 0.062990863 0.0960 0.05026612 0.0856 

LQ4 0.063196562 0.0996 0.05028158 0.0859 

LQio 0.063011997 0.0964 0.05028019 0.0859 

LQ16 0.063010129 0.0964 0.05027461 0.0858 

MCNP 0.05747 0.003 0.04630 0.003 

Table IV-13: Surface Average Scalar Flux and Net Current, Sphere Problem, 

Fine Tetrahedral Mesh 

Quadrature Scalar Flux s Net Current s 

MQ3 0.060902901 0.0597 0.04857312 0.0490 

MQ5 0.060905444 0.0598 0.04857166 0.0490 

MQ7 0.060910336 0.0598 0.04857333 0.0490 

LQ4 0.060900515 0.0597 0.04857391 0.0490 

LQ10 0.060900610 0.0597 0.04856642 0.0489 

LQ16 0.060915316 0.0599 0.04856830 0.0489 

MCNP 0.05747 0.003 0.04630 0.003 

Tables IV-14 and 15 summarize the volume average data. All quadratures 

show nearly equal performance in calculating the volume average scalar flux 
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Table IV-14: Volume Average Scalar Flux Data, Coarse Sphere 

Quadrature Region Volume 
Average Scalar 
Flux 

MCNP 
Benchmark 
+/- .2% 

s 

MQ3 Shield 0.259490998 0.17601 0.47430 

Source 2.073454733 1.29600 0.59989 

MQ5 Shield 0.260540247 0.17601 0.48026 

Source 2.059669935 1.29600 0.58925 

MQ7 Shield 0.260516136 0.17601 0.48012 

Source 2.060075531 1.29600 0.58956 

LQ4 Shield 0.261797736 0.17601 0.48740 

Source 2.043972732 1.29600 0.57714 

LQ10 Shield 0.260675794 0.17601 0.48103 
Source 2.057621449 1.29600 0.58767 

LQ16 Shield 0.26067187 0.17601 0.48101 
Source 2.05772263 1.29600 0.58775 

for a given mesh. By examining the errors in the source region shown in 

Tables IV-15 and 16 an interesting phenomenon can be detected when 

refining the mesh from the medium to the fine sphere. The error in the 

source region increases from about one percent up to about nine percent. The 

expected trend is for error to decrease with this level of mesh refinement. 

The source of this increase in error is suspected to be the same unresolved 

problems in the TETRAN code that induced the biasing mentioned earlier. 

This only seems to become detectable when running fine mesh problems. It 

is suspected that a very small biasing in the positive x direction that only 

accumulates significantly for very fine meshes is caused by a tetrahedron 

splitting algorithm used by TETRAN. The magnitude of this problem does 
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not appear to vary with quadrature and therefore we can still use this output 

for relative comparisons between quadrature sets. 

Table IV-15: Volume Average Scalar Flux Data, Medium Sphere 

Quadrature Region Volume 
Average Scalar 
Flux 

MCNP 
Benchmark 
+/- .2% 

s 

MQ3 Shield 0.206680395 0.17601 0.17425 

Source 1.313078744 1.29600 0.01318 

MQ5 Shield 0.20660516 0.17601 0.17383 
Source 1.312631187 1.29600 0.01283 

MQ7 Shield 0.206585308 0.17601 0.17371 
Source 1.312932737 1.29600 0.01307 

LQ4 Shield 0.206521942 0.17601 0.17335 
Source 1.312863629 1.29600 0.01301 

LQio Shield 0.20670228 0.17601 0.17438 
Source 1.311474207 1.29600 0.01194 

LQi6 Shield 0.206639441 0.17601 0.17402 

Source 1.312184651 1.29600 0.01249 

Table IV-16: Volume Average Scalar Flux Data, Fine Sphere 

Quadrature Region Volume 
Average Scalar 
Flux 

MCNP 
Benchmark 
+/- .2% 

Absolute 
Relative Error 

MQ3 Shield 0.19327010 0.17601 0.09806 
Source 1.18027900 1.29600 0.08929 

MQ5 Shield 0.19331830 0.17601 0.09834 
Source 1.17998870 1.29600 0.08951 

MQ7 Shield 0.19331458 0.17601 0.09832 
Source 1.17996012 1.29600 0.08954 

LQ4 Shield 0.19331059 0.17601 0.09829 
Source 1.17996978 1.29600 0.08953 

LQ10 Shield 0.19336766 0.17601 0.09862 
Source 1.17981243 1.29600 0.08965 

LQ16 Shield 0.19334904 0.17601 0.09851 
Source 1.17988161 1.29600 0.08960 
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Computational efficiency was measured in the same fashion as for 

problem one. Table IV-17 shows the user time for each quadrature and each 

mesh. 

Table IV-17 :User Time in Seconds Taken to Solve the Sphere Problem 

Quadrature Coarse Mesh Medium Mesh Fine Mesh 

MQ3 13.46 62.73 531.79 

MQ5 25.78 121.17 1015.44 

MQ7 37.99 177.87 1494.66 

LQ4 12.48 58.87 491.42 

LQio 62.47 278.98 2471.91 

LQi6 149.05 701.37 5788.87 

Figures IV-38 shows a plot of data from Table IV-14 of user time versus 

relative error in the volume average scalar flux for the coarse mesh. This 

curve is nearly flat. Curves for the other levels of mesh refinement and for 

the net current as similar. The lack of significant features implies the 

quadratures have already converged to the minimum error obtainable by the 

discrete ordinates method even for the lowest order quadrature. This is not 

surprising considering the simple nature of the problem. 
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Figure IV-38: Relative Error in Volume Average Scalar Flux, Sphere Problem, 

Coarse Tetrahedral Mesh 

Parallelepiped Mesh 

Only one mesh was used for this problem. As in the cube case, 

reflective boundaries were used on three sides and the problem was run using 

a one eighth section of the sphere. The remainder of the problem is assumed 

to be the same by symmetry. Data for the parallelepiped mesh is shown in 

Table VI-18. The numbers in parentheses in the volume columns are for an 

entire sphere if reflective boundaries had not been used. The volumes shown 

here are compared with 98.96 and 14.14 cm3 for an actual spherical volume. 

This method of mesh generation has a difficult time matching curved 

surfaces. 
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Table IV-18 : Parallelepiped Mesh Data 

Total Cells 
in Problem 
3375 

Cells in 
Material 
1464 

Cells in Source 
Region  
211 

Net Volume of 
Shield (cm3) 
10.02 (80.2) 

Net Volume of 
Source Region (cm3) 
1.688 (13.5) 

The cells are cubes .1 cm across corresponding to .075 optical thickness. The 

source volume was allowed to bulge into the shield region a small amount to 

allow for closer volume modeling. Figure IV-39 shows contour plots of the 

scalar flux in the x-y plane cutting through the origin. Despite the rough 

geometry of the mesh, the results are fairly uniform. Figure IV-40 shows the 

volume average scalar flux and Figure 41 shows the relative error. All 

quadrature sets did well, with error less than two percent. This data is 

summarized in Table IV-19 

Table IV-19: Sphere Data Summary, Parallelepiped Mesh 

Quadrature Volume Average 
Scalar Flux 

Relative Error Net Current Relative Error 

MQ3 0.3110153 0.0158015 0.047224 0.019887 

MQ5 0.3111058 0.0155153 0.047246 0.020359 

MQ7 0.3111027 0.0155251 0.047224 0.019871 

LQ4 0.3107919 0.0165086 0.047302 0.021565 

LQio 0.3111415 0.0154021 0.047215 0.019677 

LQi6 0.3112716 0.0149906 0.047218 0.019755 

Figure IV-42 shows the net current by quadrature with the MCNP 

benchmark. Again, the results show little deviation by quadrature. Figures 

IV-43 and 44 show the relative error vs. computation time. Neither 

quadrature method seems to have a clear advantage. 
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Table IV-20 : Time by Quadrature, Sphere Problem, Parallelepiped Mesh 

Quadrature Time (sec) 
MQ3 3.24 
MQ5 3.3 
MQ7 9.58 
LQ4 2.92 
LQ10 5.81 
LQ16 22.97 
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Figure IV-39: Comparison of Contour Plots: Scalar Flux, Z = .125 plane, Sphere 

Problem, Parallelepiped mesh 
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Figure IV-44: Time vs. Error in Flux, Sphere Problem, Parallelepiped Mesh 
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Figure IV-45: Time vs. Error in Current, Sphere Problem, Parallelepiped Mesh 
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V. Conclusion 

The quadratures developed here show the potential for use in discrete 

ordinates transport calculations. The MQn quadratures tested do provide 

accuracy comparable to traditional methods, and often at a substantial 

saving in time. However, there is as yet insufficient data to make conclusive 

statements on the effectiveness of the method. 

Decreased computational cost for use on parallelepiped meshes may be 

obtained by development of new computer codes to take advantage of the one, 

or two dimensional aspect of the special directions, and by use of more 

flexible quadrature input modules to allow any number of ordinates. 

The MQn quadratures seem to perform best in the unstructured mesh. 

It is difficult to determine the type problem with regard to mesh type and 

problem geometry that these quadratures will work best with due to the 

limited amount of data obtained. The sphere in sphere problem did not 

adequately differentiate performance between quadrature sets.   More work 

is need on a greater variety of problems before significant conclusions on this 

aspect of performance can be made. 

The reduced number of angles in the new quadratures does reduce the 

computational cost of the problems solved. Using the tetrahedral mesh, these 

quadratures had comparable accuracy to the LQn quadratures with regard to 

smoothness and global accuracy. Their performance was best when used to 

find integral results. On the parallelepiped mesh, the MQn quadratures 
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showed substantial ray effects though still did well when calculating integral 

results. 

I recommend using the MQn quadratures on problems with little 

symmetry on an unstructured mesh. For structured meshes and problems 

with high symmetry, more data is need before a recommendation can be 

made. 

Recommendations for further research 

More quadrature sets need to be solved and more data needs to be 

generated. From an increased database, the optimal quadrature set to use as 

a function of problem geometry and mesh type may be found. Also, the 

potential benefits of the higher order of these quadratures as compared to 

others with the same number of angles needs to be investigated by evaluating 

them on anisotropic test problems. 

Development of code to take advantage of the one- and two- 

dimensional aspects of the MQn quadrature sets may provide an interesting 

challenge with potentially a great deal of gain. Integrating the new code 

modules with current programs may allow for easy transition to these new 

sets where applicable 

I have been unable to solve any quadrature above seventh order. 

I spent many hours on Mathematica, and attempted to write a FORTRAN 

program using an expansion method, but was unsuccessful. More time in 
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developing a method of solving the high order polynomials may yield higher 

order quadratures. 
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Appendix A 

EachcaseA, B, C, 1, 2, 3, and 4 included in a quadrature contribute to the summation 

JwnMn
2k, k = l, 2, ...,L. 

Because of the symmety requirements all of the weights for a paa±ioiLar case are required 

to be the identical and all of the angles for each case are functions of the angles, n and n, 

inthebasehextant. In some of the cases the angles have restrictions on them so they 

are not free parameters. Thenumberof degreesof freedan provided by a case is the number of 

free angles plus one for the weight. Each case below will have a discussion of which 

parameters are free. 

CaseA: This consist of six points over the unit sphere, two on each coordinate axis at ± 

1. All of the angles are restricted in this case and only the weight is free, 

yielding one degree of freedom. The contribution of caseA to the sunniation is 

w[(l)2k+ (0)
2k

+ (0)
2k + (0)

2k
+ (0)

2k
+ (-l)

2k] 

which simplifies to 

2w 

forallk* 0. 

CaseB: This case consist of 12 ordiates over the unit sphere . Each ordinate has 

one direction cosine equal to zero and the other two equal—— in the principal 
V2 

octant. The only free parameter for this case then is the weight for one degree of 

freedom . The contribution of caseB to the summations is 

»[<(^f*«°>"*<(-^f] 

which simplifies, fork* 0, to 

8 w 

2k. 

CaseC:   This case consist of 24 ordinates 
over the unit sphere .   Each ordinate has one direction cosine equal to zero, 

2   2  -2 
one free, and the other is found from ii  + rj + s =1. 

This leaves one free angle and the weight for two degrees of freedom . The contribution 

to the summation is 

w[4M2k+4(VT^M
2)2k+8(0)2k+4(-Ai)

2k
+4(-VT^

2)2k] - 

This simplifies to, fork* 0, to 

8w[*i2k+(l-,i2)k] . 
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Casel: This case consist of eight ordinates over the unitsphere . Eachdirection 

cosine is equal to —^ in the principal octant. This leaves only the weight free 
V3 

for one degree of freedom. The contribution is 

*[« hH   +4 - 
2k   /   .  \2k 

V3} {    V3 

This sirtplifies to 

8 w 

3k 

Case2 : This consist of 24 ordinates over the unit sphere . One angle is free, 

the other two are equal. This yields two degrees of freedom, 

one angle and one weight. The contribution is 

,2k        , rz ^\2k 

w[4,2k+8L/^r\4(-,)2k+8( I1'* 

which siuplifies to 

Sw^^j1^)1] 

Case3 : This consist of 24 ordinates over the unit sphere . Qneanglesis 

free and the other two are equal. This yields two degrees of freedom as for case2 

above. There are two way to look at the contribution for case3 . The first is to note 

that all angles for this case result if when solving for a case2, the angles are less 

than—— . This puts the angle out of the base hextant if this angle is n .   Butif, 
V3 

when this results, we concider the angle as 77 instead, 

this ordinate will lie in the base hextant and is infact a case3 ordinate . Theother 

method is to proceed as normal resuling in the following contribution equation 

w[8M2k+4(VlT2M2)
2k

+8(-Ai)
2k

+4(-Vl-2M2)
2k] 

which sinplif ies to 

8w[2M2k
+(l-2/i2)k] . 

I prefer to use the former method and use a contribution equation in the form 

8w[,»+2(^)V 

The two equations are equivalent, 

/I-J72 
as can be easily verified by substituting \i- J —-— into the first result. 
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Case4 : This consist of 48 directions over theunit sphere. Both n and 77 are free parameters 

as is the weight. This is the most ejipensive case to indued and the most difficult 

tosolve. To find the three angles defining this ordinate in the base hextant, 

we must leaver and rj as free parameters and find? using £ = 

1 - n2 + ri2 . The resulting contribution equation is 

w[8M
2k + 8T7

2k
+ 8 (Vl-M2 - n2)2k* 8 (-M)2k+ 8 (-r,)2k + 8 (-Vl- M2- nz )**] 

which simplifies to 

16w[*i2Wk
+(l-/i

2-772)k] • 
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Off[General::spelll] 

caseA[w_, k_] := 6w/;k==0 

caseA[w_, k_] : = 2 w / ; k ! = 0 

caseB[w_, k_] : = 12 w / ; k == 0 

caseB[w ,k ] : = 8 —- / ; k ! = 0 
—  —      2 

caseC[w_, a_,  k_] : = 24 w / ; k == 0 

caseC[w_, n_,  kj :=8w (n2k + (l-M2)*) /; k !=0 

w 
easel [w_, k_] : = 8 — 

/i2k + 2 case2[w_, /i_, k_] := 8 

(* When a case 3 ordinate is desired, 

use the case 2 equation an substitute r)  for \x.   *) 

case4[w_, ji_, n_< k_]  : = 16 w (fi21c + (1 - ß2 -r?2)k + 772k) 

(* The Filter function below 

searches a list of quadrature output from a Solve function and *) 

(* returns null values for elements in the list with negative weights or 

angles or imaginary values. *) 

Filter[TL_, vars_] := Table[If[(vars / . TL)[[j]] = = 

Table[Select[Re[(vars / . TL) [[i]]], # > OS], {i, LengthfTL]}] [[j]] , TL[[j]]], 

{j, Length[TL]}] 

6etQuad[Equations_, vars_] := Filter[NSolve[Equations, vars], vars] 

1 , 
Eqns = Table [Expand [caseA[wA, k] +caseC[wC, nC,  k] ] == ———— , {k, 3}J 

{2 wA+8 wC = = y, 2wA+ 8wC- 16WCMC2
 + 16WC,UC

4
 == y, 2 wA + 8 wC - 24 wC ßC2 + 24 wC^C4 == y} 

Solve [Eqns, {wA, wC, fiC}] 

{} 

(*  The caseA +  caseC combination has  no  solution *) 

1 , 
Eqns = Table [Expand [caseB[wB, k] +caseC[wC, ßC, k] ] == —-——, {k, 3}J 

{4 wB + 8 wC == -=-,  2 wB + 8 wC - 16wC^C2 + 16wC,uC4 == y, wB + 8 wC - 24 wC ßC2 + 24 wC^C4 == y} 
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Solve [Eqns,   {wB, wC, pC}] 

{} 

(* The BC case combination has no solution *) 

1 , 
Eqns = Table [easel [wl, k] +caseC[wC, iiC, k] == , {k, 3}J 

{l|L + 8wc==l, l|^ + 8wcK+(i-^)2)==y' ^r + 8wc(^+(i-^)3)==4-} 

Solve [Eqns, {wl, wC, pC}] 

{{wl-> 2IÖ-, wC^^-, ^C-»- /-^-(13-V65)}, {wl- 2IF'WC"W' 

£, (13-V65) }, fwl^-Jn-, wC-»^-, ^C -, - ±  (13 + V65) }, ^C^A 2^ (13-V65) }, iwl^28cf, wC-^20", /iO^- . 26 

{wl^ JL-, wC^J^, MC-, /^ (13 + V65) }} 280 

(* The fourth solution above belongs to the base set, 

the others coinside with the ordinates 

resulting from symmetry operations. *) 

(* Numerical 
conditioning of the quadrature will be best if the weights are simmilar, the decimal 

values below show this to potentialy be a good quadrature *) 

N[%21[[4]], 16] 

{wl^ 0.03214285714285714, wC -* 0 . 03095238095238095, ßC -> 0 . 9000482411921158} 

1 , 
Eqns = Table[caseAfwA, k] +caseB[wB, k] + casel[wl, k] ==       , {k, 3}J 

{lZl + 2wA+4wB==l, 1|1+2WA+2WB==|-, ^ + 2wA + wB==|} 

Solve [Eqns, {wA, wB, wl}] 

{{wA^ ±-,  wB-^^, wl-> 2^}} 

N[%24, 16] 

{{WAH> 0.047 61904761904762, wB-> 0 . 0380952380952381, wl -» 0.03214285714285714}} 

(* The above weights are also similar in magnatude. *) 

B-2 



1 , 
Eqns  =  Table[caseA[wA, k] +cas6B[wB, k] +caseC[wC, nC, k] +casel[wl, k] ==  2k + 1 <  <k' 5>J 

{iZl + 2wA+4wB + 8wC= = y,   -^p- + 2 wA + 2 wB + 8 wC (/iC4 + (1-^C2)2)  == y, 

8W1   +2wA + wB + 8wC(MC6
+(l-^C2)3)==y,   ^ + 2 wA + yf- + 8 wC („C8 + (1 - ^ ) * )  = =y. 

27 

^L + 2wA+^ + 8wC (^C10 + (1-MC2)5) = =yr- 
243 4 \ '11 

quadABCl = Solve[Eqns,  {wA, wB, wC, wl, nC}] 

{} 

(* TheABCl case has no solutions *) 

Eqns = Table [oaseA[wA, k] +caseB[wB, k] +casel[wl, k] + case2 [w2, \i2, k] ==  2k+1 •  {*' 5>] 

|1^L + 8W2 + 2WA+4WB== y,   1|1 + 2 wA + 2 wB + 8 w2 [ß2A + y (1 - ß22)2) == y, 

ly + 2wA + wB+8w2 (M2
6
+ y  (1-M2

2
)
3
)  == y, 

! wl      „    „      wB      „__„  /..„8  .   1    ,i      „,2,M ! 

1 

+ 2wA+ -^ + 8w2 k(28 + -5- (l-^22) 

quadAB12 = Solve [Eqns,  {wA, wB, wl, w2, /i2}] 

rr 4 64 ., 27 14641 
HWA^ W WB^  283^' Wl^T28F' W2_>  725760' ^2 "* 11 

3 r       4 64     ,    2/ I4b41    „     J  n 

(WA^ W WB^ 283T' ^TW W2^^257W ^^ VTT}} 

(* The second solution belongs 
to the base set.  Its numerical value shows it to potentialy be 

a good quadrature *) 

N[quadAB12[[2]], 16] 

{wA-* 0.0126984126984127, wB -» 0 . 02257495590828924, wl -> 0 . 02109375, 

w2 -> 0.02017333553791887, \i2 ^0.904534033733291} 
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1 , 
Eqns  = Table[caseAfwA, k] +caseC[wC, ixC, k] +oase2[w2, u2, k] == 2k + 1 '  <k' 5>J 

{8w2 + 2wA+8wC== y,  2 wA + 8 w2 (fj24 + 1 (1 - ß22)2) + 8 wC (/iC4 + (1-^C2)2)  == y, 

2wA+8w2 (^26+T (1-JU22)3) + 8 wC (^C6 + (1-^C2)3) == y, 

2wA+8w2 (,u28 + -i- (1-/J22)4) + 8 wC (^C8 + (1-^C2)")  == y, 

2wA+8w2 (^210 + Tr (1-/J22)5) + 8wC(fiC10 + (l-/iC
2)5) ==^7} 

quadAC2 = Solve [Eqns,   {wA, wC, w2, fiC, /i2}] 

(*  Large output deleted *) 

(*  I' 11 apply the Filter function to better see what I have *) 

Filter[quadAC2,  {wA, wC, w2, nC, )i2}] 

.            2(41-2V22)                 44 + 13V22 
{Null, Null, Null,   |WAH> —i—2835    ' wC "*  5670 ' 

-2-  ll {5522elf2)  > ^\^ ^-V^T^W^T ) , ,2^yV  (11.2V22) }, 
2(41-2V22)                  44 + 13V22         ,       11 (55 - 4 V22 ) 

Null, Null, Null,   {wA-> 2835 '-, wC^  ^^ , w2 -*  32^ , 

ßC_>    /j_ J33 + -733 (-11 + 4 V22) ) , ^2^Jjf (H + 2V22) }» Null, Null, Null, 

Null, Null, Null, Null, Null} 

(* Let' s  see what the numerical values are  *) 

N[%%, 16] 

{Null, Null, Null, {wA^ 0.02230629169689816, wC -> 0 . 01851418075444525, 
w2 -> 0.017575912987 99687, /;C -» 0.507 4563057138757, ,u2 H> 0.7858759158676477}, 

Null, Null, Null, {wA^ 0.02230629169689816, wC^0.01851418075444525, 
w2 -> 0.01757591298799687, ,uC-> 0.8616774905910132, ^2 H>0.7858759158676477}, 

Null, Null, Null, Null, Null, Null, Null, Null} 

(* Since \x2.  is greater then -p- this is a case2 ordinate.  The second non 

null solution is in the base set. *) 
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1 , 
Eqns  = Table[caseB[wB, k] +caseC[wC, »C, k] +case2[w2, /i2, k] ==  2fc + 1 / <k< 5>J 

y,  2wB+8w2 (^24 + -  (l-^22)2) + 8 WC (/iC4 + (1-^C2)2) == y, 

wB + 8w2 (^26 + i- (l-^22)3) +8wC (MC
6
 + (l-/uC2)3) 

[ 8 w2 + 4 wB + 8 wC 

1 

^ + 8w2  (^28 + ¥  (1-/J2
2
)«) +8wC (^C8 + (1-^C2)4)  == y, 

+ 8w2 (M210+yy (l-^22)5) + 8 wC (^C10 + (1-^C2)5)  = = -^-] 

wB 

wB 

quadBC2 = Solve [Eqns,  {wB, wC, w2, /iC, nZ}\ 

(* Large output deleted *) 

Filter[quadBC2,  {wB, wC, w2, nC, fi2}] 

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 

16   -190 + 169 V22 
wB -> 526995 

-, wC -> 
169565-5933 V22 

9485910 
, w2 -» 

11    55-4 V22 
22680 

9042 

16 (-190 + 169 V22 

„C^/   ^21->/452M2761 + 52V22)    , ^ / ,L (ll + 2 y22 )   }, Null, Null, 

526995 

33 

169565-5933 A/22   .  11 (55 - 4 V22 
/ wC -»  n,,ocnl n , w2 -> 

9485910 Null, {wB 

/4521 +J4521 (2761 + 52V22)    „   /~1  ZT,  , /rr> n ^C -> J  ^ ATö  '^2 -> J ^- (11 + 2 V22 ) }} 

22680 

9042 

N[%, 16] 

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 
{wB-> 0.01829786661080761, wC -» 0 . 01494182037326599, w2 ^0.01757591298799687, 

IJC^ 0.3039216446504884, ^2-^0.7858759158676477}, Null, Null, Null, 
{wB-> 0.018297866610807 61, wC -> 0.014 94182037326599, w2 -> 0 . 01757591298799687, 

ßC^ 0.95269703154 41012, \i2 -» 0 . 7 85875915867 6477} } 

(* This quadrature also has promising weights, 

the last solution is in the base set. *) 
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Eqns  =  Table[caseC[wC, \xC, k] +case4[w4, /i4, r]4, k] ==  2k + 1 '  <k' 5>] 

{16W4 + 8WC== y,  16w4 (r?44 +^44 + (1 - r?42 - /i42) 2) + 8 wC (^C4 + (1-^C2)2) == y, 

16 w4 (r(46+/i46+ (1 - r?42 -^42)3) + 8 wC (A<C
6
 + (1-^C2)3) == y, 

16w4 (r748
+M48+ (1 - r,42 - ,u42)4) + 8 wC (ßCe + (1-/JC2)") == y, 

16w4  (r]410
+iu410

+ (1 - r]42 - ^42) 5) + 8 wC (^C10 + (1-^C2)5) == -^y} 

quadC4 = Solve [Eqns,  {wC, w4, jiC, A<4, r74}] 

(* Large output deleted *) 

(* The decimal equivalent after filtering is shown below *) 

N[quadC4, 25] 
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Filter[%, {wC, w4, nC,  A/4, ^4}] 

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 
Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC -» 0 . 326499776057011143395600, 

w4 ^0.01229674796747967479674797, ßi -» 0 . 2856038324721905188708181 + -0 . x 10"56 I, 

r?4 ^ 0.757316019511794446172265+-0. xlO"57 I}, Null, Null, 

Null, {wC-> 0.01707317073170731707317073, ßC -» 0 . 326499776057011143395600, 
w4^ 0.01229674796747 96747 9674797, ßi -> 0 . 587284341241964586253482 + -0 . x lO"60 I, 

r?4 -> 0.757316019511794446172265+ -0. x 10~57 I}, Null, Null, 
Null, {wC-> 0.01707317073170731707317073, ßC -» 0 . 326499776057011143395600, 

w4 -» 0.0122 967 47 96747 967 47 96747 97, ßA -» 0.58728434124196458 6253482+0. xlO"60 I, 

r]4 -» 0.2856038324721905188708181+ -0. x 10"50 I}, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC -> 0 . 326499776057011143395600, 

w4 -» 0.0122 96747 96747 96747 967 47 97, ßA -> 0.7573160195117 9444 61722 65+0. x 10"60 I, 

r?4 H> 0.2856038324721905188708181+ -0. x 10"50 I}, Null, Null, 
Null, {wC-* 0.01707317073170731707317073, ßC -> 0 . 326499776057011143395600, 

w4 ^0.01229674796747 96747 9674797, ,J4 H> 0 . 2856038324721905188708181 + 0 . x 10"60 I, 

r]A -> 0.587284341241964586253482 + -0. x 10"51 I}, Null, Null, 
Null, {wC-> 0.01707317073170731707317073, ;uC -> 0 . 326499776057011143395600, 

w4 -* 0.01229674796747967479674797, ßA ^0.757316019511794446172265+0. x 10"55 I, 

r]A -» 0.587284341241964586253482+-0. x 10"51 I}, 
Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 
Null, {wC-* 0.01707317073170731707317073, ßC ->0.945197279003024623550787, 
w4 -> 0.01229674796747967479674797, ßA -> 0 . 2856038324721905188708181 + -0 . x 10"56 I, 

r}A H> 0.7573160195117 94 44 61722 65+ -0. x 10"57 I}, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC ->0.945197279003024623550787, 

w4 ^0.0122 96747 96747 967 47 96747 97, ßA -> 0 . 587284341241964586253482 +-0 . xlO~60 I, 

r?4 -> 0.757316019511794446172265+ -0. x 10"57 I}, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC -> 0 . 945197279003024623550787, 
w4 -> 0.0122 96747 96747 96747 96747 97, ^4 -> 0.587284341241964586253482+0. x lO"60 I, 

r]4 ^ 0.2856038324721905188708181+ -0. x 10"50 I}, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC -> 0.945197279003024623550787, 

w4 -*0.01229674796747967479674797, ßA -> 0 . 7573160195117 94446172265 + 0 . x 10"60 I, 

774 -» 0.2856038324721905188708181+ -0. x 10"50 I}, Null, Null, 
Null, {wC-^ 0.01707317073170731707317073, ßC ->0.945197279003024623550787, 
w4 ^0.0122 967 47 96747 96747 96747 97, ^4 -> 0.2856038324721905188708181+ 0. x 10"60I, 

r?4 -* 0.587284341241964586253482+-0. x 10"51 I}, Null, Null, 
Null, {wC^ 0.01707317073170731707317073, ßC ->0.945197279003024623550787, 

w4 -* 0.01229674796747 967479674797, ßA -> 0 . 7573160195117 94446172265 + 0 . x 10"55 I, 

774 -> 0.587284341241964586253482+-0. x 10~51 I}} 

(* The filter didi no eliminate the imaginary portions above because the 

are artifacts of rounding error and not truely imaginary values.  Higher 

precision math reduces the imaginary component further. Carfull inspection 

shows that all the above solutions are reflections of the last one, 

which is in the base set. *) 
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1 , 
Eqns = Table [easel [wl, k] +caseC[wC, pC,  k] +case2[w2, p2, k] == 2k + 1 >  (k' 5>j 

{A^ + 8w2 + 8wC==y,   ^+8w2 [^ + y (l-^22)2) +8wC (^C4 + (1-^C2)2) == 1, 

8 wl 
27    + 8w2 (/j26 + y (l-^22)3) + 8WC (,UC

6
 + (l-;uC2)3) == y, 

8wl  +8w2 (^28 + y (l-^22)4)+8wC(^C8
+(l-^C2)4)  ==1, 

81 

^ + 8w2(^2
10 + T^(l-f,2

2)5)+8wC(^C"+(l-^C
2)5) == ±-} 

quadlC2 = Solve [Eqns, {wl, wC, w2, pC,  ^2}] 

(* Large output deleted *) 

N[quadlC2, 40] 

Filter[%, {wl, wC, w2, pC, p2}] 

{Null, Null, Null, {wl^0.03139662070471866287073752871645825335788+0. x 10"52 I, 

wC^ 0.03118946912313230360638905694603843725377+ 0. x 10"53 I, 

w2 ->0.00001165730862814210336510014847547829359805+ 0. xlO"53 I, 

pC-> 0.440124599527176955730943844695059472227+ -0. xl0~68 I, 
ix2 -> 1.482898731354957472518351725181578455870+ -0. x 10"68 I}, Null, 

Null, Null, {wl -> 0.03139662070471866287073752871645825335788+ 0. x 10~52 I, 

wC-> 0.03118946912313230360638905694603843725377+0. x 10'53 I, 

w2 -> 0.00001165730862814210336510014847547829359805+ 0. xlO"53 I, 

HC^> 0.8 97 936710 9607 6816221978727 9180959387596+ -0. xlO"68 I, 

ß2 ->1.482898731354957472518351725181578455870+ -0. x10"68 I}, Null, Null, 

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null} 

(* From the above two sets of output, 
we see that there are no acceptabe 1 C2 quadratures. The filtered output 

shows quadratrues with cosines greater than one and from the unfiltered 

solutions we see there are quadratres with valid angles but negative weights. *) 

1 . 
Eqns = Table [caseA[wA, k] +caseB[wB, k] + case4 [w4, p4, r]4,  k] == ————, {k, 5}J 

•I 

{l6w4 + 2 wA+ 4 wB == y,  2 wA + 2 wB + 16w4 (rj44 +jU44 + (1 -i?4 ju4 
1 

—,     t.   «n T  t.   WJJ T   J.U   wa    y//i      T^l      T     vj- w^ f* *     /      / g 

2wA + wB + 16w4 (r)46 + ,u46 + (1 - r]42 - ^42) 3)  == y, 

2„A+^|- + 16W4  (r748 + ^48+ (1 - r]42 - ^42)4) == y 

wB 
2 wA+ —— 4 

+ 16w4 (r]410+Ai410+ (1 - r)42 - /J4
2
) 

5)  == -^-} 

quadBC2 = Solve[Eqns,  {wA, wB, w4, pA, r)4}] 

(*  Large output deleted *) 

N[%, 40] 
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Filter[%, {wA, wB, w4, n*, r?4}] 

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, 

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null} 

(* there are no valid AB4 quadratures *) 

(* The next series of quadratures are of order 7 *) 

Eqns = Table[ 

oaseA[wA, k] +caseB[wB, k] +caseC[wC, pC,  k] +casel[wl, k] +case2[w2, u2, k] == 2fc + 1 

{k, 7}] 

| JLZl + 8W2 + 2WA+4WB + 8WC== y, 

2wA+2wB + 8w2 ^24 + y (l-^22)2) + 8 wC (fjC4 + (1-juC2)2)  == —, 

L^L + 2wA + wB + 8w2 (M2
6
 + — (1 - JU2

2
) 

3) + 8 WC (fjC6 + (l-fiC2)3) == —, 

!J^. + 2WA+T^ + 8W2 (M2
8
 + ^  (1-^2

2
)
4
)+8WC(A<C

8
+(1-MC

2
)
4
)  = = y, 

8 wl 
9 

8 wl 

Ajl + 2wA+^ + 8w2 (/^210 + 1y (l-^22)5) + 8 wC (^C10 + (1-^C2)5) == ^-, 

l^ + 2wA+^ + 8w2(i.2
12 + y^(l-M22)6)+8wC(^C12

+(l-^)6) == A., 

JjlL + 2wA+^ + 8w2(^ + ^(l-^22)7)+8wC(^+(l-^2)7)==1y} 

quadABC12 = Solve[Eqns, {wA, wB, wC, wl, w2, ßC,  /J2}] 

(* Large output deleted *) 

N[quadABC12, 16] 

Filter[%, {wA, wB, wl, wC, w2, nC, n2}] 

{Null, Null, Null, {wA^ 0.009048188830155413, 
wB-> 0.0210324 60437427 95, wl -» 0.01827 941392341811, wC-» 0.0064514 91538566835, 

w2 -»0.0163437597273743, ,uC ^ 0 . 2979519566503113, \x2 ^0.8753170875981718}, 
Null, Null, Null, {wA^ 0.009048188830155413, wB -> 0 . 02103246043742795, 

wl -»0.01827941392341811, wC -> 0 . 006451491538566835, w2 -+0.0163437597273743, 

,uC->0. 9545808669401723, ^2 -> 0. 8753170875981718}, Null, Null, Null, Null, 

Null, Null, Null, Null} 

(* The second of the above valid quadratures is in the base set, 

the other is a reflection. *) 
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Eqns  =  Table[caseAfwA, k] +oaseC[wC, nC, k] +oase2[w2, ß2, k] +case2[w3, n3, k] ==   2k + 1 

{k, 7}] 

{8 w2 + 8 w3 + 2 wA + 8 wC == y 

ß2U±- (l-ß22)2) + 8w3 (p<34 + -i-  (1-M32)2) + 8 wC (^C4 + (1-^C2) 

26 + l (1 -^22)3) +8w3 (^36 + ^ (l-^32)3) +8wC (^C6 + (l-/iC 

M28 + l (l-^22)4) + 8w3 (M38 + y (l-^32)4) + 8 wC (MC8 + (1-/JC2) 

^ 
1 

+ 8 w3 ^3l°+ T6" d-A(32)   ) +8wC (ßC10 + (1-^)   )  == Tr, 

^212 + -^ (1-M22)"    + 8w3   /i312 + ^- d-^32)      + 8 wC (^C12 + (1-^)   )  == TJ 

+ _L (l-^22)7) +8w3 ((U314 + ^ d-^32)7) +8wC (/iC14 + (WC2)7) == ^ 

2 wA + 8 w2 

2 wA + 8 w2 

2 wA + 8 w2 

2 wA + 8 w2 

2 wA + 8 w2 ijji     -i- -ZTJ- \J. -f"-  /   IT^».^,K^     .   22 

2wA+8w2 (^214 + -^ (l-A'S2)7) +8W3 (/i314 +   64 

quadAC2 3 = Solve [Eqns,  {wA, wC, w2, w3, fiC, /i2, n3}] 

$Aborted 

(* The computer was not able to solve this exactly, 

I will now try the numerical function *) 

quadAC23=NSolvefEqns, {wA, wC, w2, w3, pC, ß2, n3}] 

$Aborted 

(* The computer was not able to find this solution directly either.  I 

will lend some assistance *) 

Eqnsl4 = Table[ 
1 

caseAfwA, k] +caseC[wC, fiC, k] +case2[w2, \i2,  k] +case2[w3, ix3,  k] = = 

1 
5 ' 
1 
y 

9 ' 

-, {k, 4}] 

w2 + 8 w3 + 2 wA + 8 wC 
l_ 
3 ' 

2wA+8w2 (^24 + y (1-/U2
2)2) + 8 w3 (^34 + \-  (1-M32)2) + 8 WC (^C4 + (1-/JC2): 

2wA+8w2 (,u26 + -i- (l-^22)") + 8 w3 j^3 

1 

2 

•4 
1 

(l-ju32)  +8 wC [iJCb + (1 -ßCz 

2wA+8w2 ^2" + -=- (l-^22)") + 8 w3 [ß3s + ±- (1-M32)4) + 8 wC (^C8 + (1-^C2)4) == y} 

Solve[Eqnsl4, {wA, wC, w2, w3}] 

{wA, wC, w2, w3} = {wA, wC, w2, w3} /. %%[[1]]; 

Expand[wA]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%] ; 
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Simplify[%] 

(-(1-2 p<C2)2 (3 + 9^36-29^C2 + 29^C4+^32  (-1 + 54 ßC2 - 54 ßC4) + ju34  (-11 - 21 ^C2 + 21 ^C4) ) + 

9/J26 (-(1-2^C2)2 + 

M34  (-39 + 210MC
2
-210A(C

4
) + 21 ß36 (1 - 5 ßC2 + 5 ßC4) + ß32 (19 - 105 ßC2 + 105 ßC4) ) + 

M22 ((1-2/uC2)2 (l-54/jC2 + 54iuC4) + 

9M36 (19-105MC
2
 + 105A(C

4
) + ;u34  (-281 + 1716 ßC2 - 2556 ßC4 + 1680 /JC

6
 - 840 ^C8) + 

,u32  (109 - 653 ßC2 + 989 ^C4 - 672 ßC6 + 336 juC8) ) - 

ß24 ((1-2 MC2)2  (-H-2lAiC2+2lMC4) + 

27 ß36 (13 - 70 ßC2 + 10 ßC4) - 3 ^34 (207 - 1225 ßC2 + 1645 ßC4 - 840 ^C6 + 420 ßCs) + 

ß32 (281- 1716 ßC2 + 2556 ^C4 - 1680 ^C6 + 840 ,uC8) )) / 

(630 (-l+A'22)   (-l+ju32) A'C2 (-1 + /JC2)   (9 ß24 ß32 (-l+^32) + (-1 + /U32)   (1-2^C2)2 + 

^22  (-9^34
+ (l-2^C2)2 + 4^32 (2-3A(C

2
+3JUC

4
)))) 

wA = %27; 

Expand[wC]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%]; 

Simplify[%] 

(3 + 2^32-9^34-9^24 (1 - 18 ^ + 21 ß34) + 2/J2
2
 (1 - 54 ß32 + 81 ju34) ) / 

(2520/JC
2
 (-1+juC2)   (9^24iu32 (-l+^32) + (-1 + ^32)   (l-2juC2)2 + 

ß22 [-9ß34 + (1-2/JC
2
)
2
 + 4M3

2
  (2 - 3 ßC2 + 3 /JC

4
) ) ) ) 

wC = %33; 

Expand[w2]; 

Together[%]; 

Cancel[%38]; 

PowerExpand[%]; 
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Simplify[%] 

(-9^36+ (l-2^C2)2-3^32  (5-24MC2 + 24^C4) + ,u34 (23 - 84 /iC2 + 84 ^C4) ) / 

(630 (-l+^22)   (M22-^32)   (9JU24
M32 (-l+^32) + (-l + ^32)   (1-2^C2)2 + 

U22 (-9^34+ (l-2^C2)2 + 4^32 (2 - 3 \iZ2 + 3 ^C4) ) ) ) 

w2 = %; 

Expand[w3] ; 

Together[%] ; 

Cancel[%]; 

PowerExpand[%]; 

Simplify[%] 

(9/J26- (1-2^C2)2+A/24 (-23 + 84iuC2-84MC4) + 3 ß22 (5 - 24 nC2 + 24 ^C4) ) / 

(630 (A<22-/J32)   (-1 + M32)   (9^24
M32 (-l+^32) + (-l+,u32)   (1-2MC2)2 + 

^22  (-9^34
+ (1-2MC2)2 + 4,U32 (2 - 3 ßC2 + 3 /JC4) ) ) ) 

w3  =  %; 

lhs5  =  caseAfwA, 5] +caseC[wC, ßC, 5] +case2[w2, \i1, 5] +case2[w3, /i3, 5] 

Expand[%]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%] ; 
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Simplify[%] 

( (-23 + 25 iu32 - 5 M3
4
 + 3 ß36)   (1 - 2 /JC

2
)
2
 - 

3^26 (9^36- (1-2MC
2
)
2
+^3

4
 (-23 + 84 ßC2 - 84 ,uC4) + 3 ß32 (5 - 24 ßC2 + 24 /JC

4
) ) + 

^24  (-5 (1-2MC
2
)
2
+A(3

4
  (65 + 636MC

2
 -636^C4) + 

3 ß36 (23 - 84 iiC2 + 84 ßC*) +3 ^32 (-43 - 124 ßC2 + 124 /JC
4
) ) + 

^22 (25 (1-2/JC
2
)
2
 - 9^36 (5 - 24 ^C2 + 24 ßC4) + 

M32  (149 - 112 ßC2 + 112 A<C
4
) + 3 ^34 (-43 - 124 ßC2 + 124 juC4) ) ) / 

(252 (9A<2
4
M3

2
  (-1+M32) + (-l + ^32)   (1-2^C2)2 + 

ß22 (-9 Ai34 + (1-2/JC
2
)
2
 + 4M3

2
 (2 - 3 MC

2
 + 3 ßC*) ) ) ) 

lhs5 =  %; 

lhs6 = caseA[wA, 6] +caseC[wC, nC, 6] +case2[w2, \i2, 6] +oase2[w3, /i3, 6] ; 

Expand[%] ; 

Together[%]; 

Cancel[%]; 

PowerExpand[%]; 

Simplify[%] 

((1 -2^C2)2 (27 ^36 + 33M3
8
 + 

2 (-97-6/JC
2
 + 6^C

4
) +^32 (245 - 8 ßC2 + 8 ^C4) - 3 ^34  (37 - 12 ßC2 + 12 /iC4) ) - 

33^28 (9^36- (1-2MC
2
)
2
+^3

4
  (-23 + 84 ßC2 - 84 ^C4) + 3 ^32 (5 - 24 ßC2 + 24 ßCA) ) - 

3ß2* (9 + 11/J32)   (9^36- (l-2/iC2)2+/j34  (-23 + 84 ßC2 - 84 ßC") + 3 ß32 (5 - 24 ßC2 + 24 ßC") ) + 

,u22 ((1-2^C2)2 (245-8/jC2 + 8^C4) -99^38  (5 - 24 ßC2 + 2AßCi) - 

12 M3
6
 (31-151 MC2+ 151 MC4) + ß32 (676 + 2220 ßC2 - 3948/JC

4
 + 3456 ^C6 - 1728 MC

8
) + 

54 ^34  (-1 -162^C2 +210/JC4 - 96 ßC6 + 48,uC8)) +      ' 

3,u24  (-6M36 (-7 -6 ^C2+ 6 ^C4) - (1-2MC
2
)
2
 (37-12^C2 + 12/JC4) + 

llA<38 (23-84 MC2+ 84 MC4) + 18 ,u32  (-1 - 162 ^C2 + 210 ^C4 - 96 ,uC6 + 48 ,uC8) - 

4 ß3l (60 - 991 ßC2 + 1243 ßC4 - 504 ßC6 + 252 ^C8) ) ) / 

(2520 (9^2
4
M3

2
  (-1+M32) + (-l + ^32)   (1-2MC

2
)
2
 + 

ß22 (-9^34+ (1-2MC
2
)
2
 + 4M3

2
 (2 - 3 MC

2
 + 3 MC

4
) ) ) ) 

lhs7   =   %; 

lhs7  =  caseA[wA, 7] +caseC[wC, /iC, 7] +case2[w2, f/2, 7] +case2[w3, fi3, 7] ; 

Expand[%]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%]; 
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'6     (l-2ßC2)2 +1^3" (-23 + 84;UC
2
-84/JC

4
) + 3 ß32 (5 - 24 ßC2 + 24 ^C4) ) + (l-2fiC2)2 

Simplify[%] 

-(9^210  (9^36- (1-2^C2)2
+Ju34  (-23 + 84/jC2-84,uC4) + 3 ,u32  (5 - 24 ßC2 + 24 ^C4) ) + 

,u28 (10 + 9^32)  (9;u36- (l-2iuC2)2+^34 (-23 + 84 ßC2 - 84 ,uC4) + 3 ß32 (5 - 24 piC2 + 24 ßC4) ) + 

,u26 (7 + 10 M3
2
 + 9,u34) 

(9M36 

(47-7^3
6
-10M3

8
-9^3

10
 + 12MC

2
-12(UC

4
-8M3

2
 (9-MC

2
+^C

4
) + ß34  (51 - 36 ßC2 + 36 ßC4) ) + 

,u22 (-8 (1-2^C2)2  {$-ßC2
+ßC4) + 27^310 (5 - 24 ßC2 + 24 ^C4) + 3 Ai38  (47 - 228 ßC2 + 228 ^C4) + 

/J3
6
 (95-464,UC

2
 + 464/JC4) + ,u34 (-34 9 + 4348 ßC2 - 6940 ßC4 + 5184 ßC6 - 2592 ,uC8) + 

^32 (50 - 1872 ßC2 + 3600 ^C4 - 3456 ßC6 + 1728 ^C8) ) - 

M24  (-3 (l-2;uC2)2 (17-12^C2 + 12^C4) - 

4ß3e (-5-2AßC2 + 2AßC4) + 9 ß310 (23 - 84 ßC2 + 84 ßC4) + 

ß3s (95-192 MC2+ 192 ^C4) - 4/J3
4
 (155 - 137 6 ßC2 + 2132 ^C4 - 1512 ßC6 + 756 juC8) + 

Ai32 (349 - 4348 ßC2 + 6940 ßC4 - 5184 ßC6 + 2592 ^C8) ) ) / 

(720 {°,ß24 ß32 (-1+M32) + (-1+A(32)   (1-2/JC
2
)
2
 + 

^22 (-9M3
4
+ (1-2^C

2
)
2
 + 4M3

2
 (2 - 3 ßC2 + 3 ^C4) ) ) ) 

lhs7  =  %; 

1 1 1   , n NSolve[{lhs5 ==  , lhs6 == —, lhs7 == —-},  {/iC, \i2, ß3) \ 

$Aborted 

1 i Solve[lhs5 ==  ,  {/iC}J 

(* Large output deleted *) 

Length[%] 

4 

(* The four solutions above correspond to the base angle and its reflections, 

I will continue only using the last solution above *) 

HC  = /iC /. %78[[4]] 

Expand[%]; 

Together[%]; 

PowerExpand[%]; 
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Simplify[%] 

(7(-1 + 23A<3
2
 -55^34 + 

33^3
6
 + 33M2

6
 (l-18fi32 + 2lAi34) + ß22 (23 - 448 iu3z + 1023 ^34 - 594 /u3&) + 

11 iu2A (-5 + 93 M3
2
 - 159 ^34 + 63 ^36) - ^2 M3 V (71 - 1807 /J3

2
 + 8006 ^34 - 14190 ß36 + 

11187 M38 - 3267 ß310 + 1089 ^210 (-3 + 52 /J3
2
 - 18 M34 - 204 ß36 + 189^38) + 

33M2
8
  (339 - 6287 ^32 + 9822 <u34 + 7698 ju36 - 18513 ^38 + 6237 ß310) - 

2^24  (-4003 + 83437 ^32 - 287774 ,u34 + 360954 ,u36 - 162063 A<38 + 9801 ^310) _ 

22/J2
6
 (645 - 12706/^32 +32814/J3

4
-19704 fi36-11547/u38 +10098 ^310) + 

ß22 (-1807 + 40008 ß32 - 166874 ß34 + 279532 ß36 - 201 All ß3e + 56628 ß310) ) ) ) / 

(V2 V(-l + 23^32-55,u34 + 33iu36 + 33Ai26 (1 - 18 ^32 + 21 ^34) + 

ß22 (23-448^32 + 1023ju34-594/j36) + 11 A<24  (-5 + 93 ^32 - 159 ^ + 63 ß36) ) ) 

ßC = % ; 

Expand[lhs6]; 

Together[%]; 

PowerExpand[%]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%92]; 

Simplify[%] 

(* Large ugly equation deleted *) 

lhs6 = %; 

Expand[lhs7]; 

Together[%]; 

Cancel[%]; 

PowerExpand[%]; 

Simplify[%]; 

lhs7 = % 

(* Large ugly equation deleted *) 

NSolve[{lhs6 ==  , lhs7 ==  },  {A/2, fi3}] Ll       13        15 ' 

Out of memory.  Exiting. 
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quadAC23=FindRoot[Eqns, {wA, .0130608}, {wC, .0154866}, 

{w2, .00673874}, {w3, .0161761}, {ßC,   .410254}, {ß2, .848421}, {ß3,   .300144}, 

AccuracyGoal-» 24, WorkingPrecision-» 34] 

{wA-*0.01306075218457543404037831995817255, wC-»0.01548662322913343575994122509932307, 

w2 ^0.00673874365125243712696660016440459, w3 ^0.01617611174013693526966426141339587, 

ßC^ 0.410253515086337171560174981725413, ß2 -»0.848421498634701466179649259967932, 

/J3 -> 0.3001438436359286871701637504638956} 

(* The FindRoot function is a root solving function.  The initial guesses used are 

from a previous effort on a slower computer.  This is one possible solution to the 

system of equations. *) 
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Appendix C: Valid Quadrature Base Sets 

N=3 
Cases 
AB 

B 

Cl 

weight 

0.0476190476190476 

0.0380952380952381 

0.0321428571428571 

0.0309523809523810 

0.0321428571428571 

mu 

0.7071067811865475 

0.5773502691896258 

0.9000482411921158 

0.5773502691896258 

eta 

0 
0.5773502691896258 

0 
0.5773502691896258 

XI 

0 
0.7071067811865475 

0.5773502691896258 

0.4357902747044488 

0.5773502691896258 

N=5 
Cases weight mu eta xi 

AB12 
A 0.0126984126984127 1 0 0 

B 0.0225749559082892 0.7071067811865475 0 0.7071067811865475 

1 0.0210937500000000 0.5773502691896258 0.5773502691896258 0.5773502691896258 

2 0.0201733355379189 0.9045340337332910 0.3015113445777637 0.3015113445777637 

AC2 
A 0.0223062916968982 1 0 0 

C 0.0185141807544452 0.8616774905910132 0 0.5074563057138757 

2 0.0175759129879969 0.7858759158676477 0.4372636760921183 0.4372636760921183 

BC2 
B 0.0182978666108076 0.7071067811865475 0 0.7071067811865475 

C 0.0149418203732660 0.9526970315441012 0 0.3039216446504885 

2 0.0175759129879969 0.7858759158676477 0.4372636760921183 0.4372636760921183 

C4 
C 0.0170731707317073 0.9451972790030246 0 0.3264997760570111 

4 .01229674796747967 0.7573160195117944 0.5872843412419646 0.2856038324721905 

N=7 
Cases 
ABC12 

B 

AC23 

weight 

0.0090481888301554 

0.0064514915385668 

0.0210324604374280 

0.0182794139234181 

0.0163437597273743 

0.0130607521845754 

0.0154866232291334 

0.0067387436512524 

0.0161761117401369 

mu 

0.9545808669401723 

0.7071067811865475 

0.5773502691896258 

0.8753170875981718 

0.911971520037388 

0.8484214986347015 

0.3001438436359287 

eta 

0 
0.5773502691896258 

0.7854361833270270 

0 
0.374286628571238 

0.674504882535127 

xi 

0 
0.2979519566503114 

0.7071067811865475 

0.5773502691896258 

0.7854361833270270 

0 
0.4102535150863372 

0.374286628571238 

0.674504882535127 

C-l 



Si 
CJ 

U 
3 

T3 
O 

3 
T3 
O 

-P 
3 a 
3 

•Ö 
a) 

3 a c 

En 
C 

>i ■X ■H * 
CD P ■X X * 
u -P ■X CO * 
p CD * g * 
3 g * T-H * 
o O * II o * 
CO CD * CD o * 

Dl * 3 *H * 
a) X O CO * 
£> T3 * IM rH * 
3 iH * s CN * 
ü a) * * 

•H * rH II * .—. .C ■X II g * 
N CO X -P O * ^ 0) X g CO * 
>ifl X X * ^ 3 rH CO 

X o II g H 

3 
•H 

M o 
CO CO 

tH 

M 

CM Ui 3 II 

P 

tt 
g o CN] M Ü 

w rH 

1-5 o II CO o 
to c rH 

o 1-5 CO II IH UD IX)   <X> 

05 -H P T-\ iH   tH 

Oj ca 
T-H 

■m CQ II 
CO 

II      II 
CO    CO 

EH ■x II CD * -p -P   4-> 

CO -x ftH * C C   Ö 

w x 3 II -x -H -H -H 

H X 

■X 

O 
p 

P 
-H 

* * X >i   N 

en ■X 0 * 
M X a rH * 
CO * II * o O  O 

w ■X g * 
OS * N ^ * CM CM   CN] 

EH -X i * 
X >1  rH * o O   O tH 

EH ■X 1 II * 1 1       1 M-) 

s ■X X g * II II      II II 
«; ■X 1L ■n * Ä A Ä CO 

Q X g * CO CO    CO <D 
W ■X o rH * <D <D  a> a 
w * CD II * g 

Pi   N 
o 

05 * 0, g * X N 

B5 — ■H •H+JS 

o 
■o 

■X p 
■X ■H 

■X p 
■X ■H 

■X 

■X ^T 

-X II CO 

ti CO a 
H 0 3 o 
H -H 0 ■H 

H ■H P 

^T P U 

II Ü CD 

Sr5 CO CD CO 

Xi 'CO 

t > ■H CO 

CO CO 

O ro CO o 
II O p 

i-l P SH o 
,C U o 

m ■H O U   ID 

CJ   IT) -H      • 

-X O ■H      • ao 
■X II fto o 
■X T! o o 
-X P CJ co ID 
-X <> CO   IT) O r- 
-X X 0 r- P    • 
■x CO 1H     • U o 
-X fi ü o -H 

■X -H S 
■X g o 
■X U. O CM   O 

■X 3 rH   O 

-X -H CD   O 

X 3 CD  O a 
■X T) a 0 
-X O o ■P   ID 

■X II P   IT) O   CM 

X il O  CM CO      • 

\   rH    P   -H   O    P   \  ' 

a 
CD 

a 
en c 
CO 

a x 
3 

■Ü 
•o 

* ■X ID 3 * O -X 

•X 

CM CD 

iH 

T3 

* rH ■X 

■X if 
>1 ID 

CD 

+ ■x fi • ^ Ä 3 
■x IH rH P rH * o X fi >1 -H 01 

CO 0 ID S > > ■H rH 

M > 
rH 

CM 

II o 
P 

CD 

>1 

CO 

(N II a1« CO p 

tf X m .u i) • * p 

-rH u u CD (U CO 

Ü e o ■H 3 
o 

rH 
>1 

P 

3 Ti 
Ü o O 

II 
en [^ P 

CO 

CD 

P 

hi • ^ 1-1 P rH rH p -H ^ x> II >1 Ti 3 
m PU •H P [^ HI rr (~) C • - 3 CD * X O H O cv p * rH ■X II cp IP * •P ■X M 4J • ^ r^ CD 

-X ■X « -H rH ?: .3 * TH X -H >1 p * c> X O [^ <l) 

-K CO ■X II • * Ä e 
■H 

CO 

X 

X 

rH 

II C) 

o 
cp 

p -H 

* rH ■X ^H cfl CO H * rH P X O ,<J rH ■H rH * X 01 ■X •H X) W •H * •H g X •H 03 CO IP 

* g II -X II ■H * II 3 X O rH cp XI <) 
-K CO en -X II II U H P 

+ H ■H ■X P a H 

■K P en X > rH 3 ■X X * CO en X CD crt <> ■X -X \ g iB — ■H X! en ^^ \ 

CO 00   CO 
i-i T-i t-H 
en <sT o, m 
CM T-H CM   CO 
-^ CO «^   CO 
r- TH r^ ro 
ro <c no m 
o ro r- r- 
CM CN] CM   O 
r- en r~ CM 
en n C3, r- 
in H m -^ 
r- «a1 \> o 
ro en ro CM 
«^ r- <^ IX) 
ro CM CO  CM 
kD CO ^O   CM 
i-l rH T-i   O 
o o o o 
o o o o 

CM "^   CM CM 
tH ^   rH i-l 
^ CO   -=T ^ 
co ^r ro co 
CO rH   CO CO 
CM r- CM CM 
CTi CO   <T\ <J\ 
\D TH   kO kD 
r- CM r- r- 
LO O in m 
■^ n ^ "^ 
i> CM r- r- 
m \o m m 
CM TH   CM CM 
CM m  CM CM 
00 O   CO CO 
O TH  O O 

o o o o 
o o o o 

vH CM "^ rH 
in TH ^r en 
CO «d1 CO CM 
CO CO -^ ^ 
oo co tH r- 
m CM r- co 
r^ CTI co r- 
O >X) rH CM 
CM r~ CM r- 
Mn o en 
^ ^ n m 
o r- CM r- 
CM uo VD co 
V£) CM >H -^r 
CM CM in CO 
CM CO O V£> 
O O rH tH 
o o o o 
o o o o 

5 

rH   CM   CO   ^ lO^^CDcylOHc^ln^ln^^o^cTlOHt^ln^li^^^coo^OHC^^ro^ln^^co^oH 
HHdHHHHHHHMCNiNOJMWw^csicNimmmnnmnromn^^ 



*       -H       *       *       *       * 

ko ,H oo oo o uo 
[-- [-- rH LO O <X> 
in o oo r- o ^x> 
^ ^r u) CD o i/i 
r- o c\i o o rr. 
m <H o r- o rH 
es] (Nj in H o i/i 
CM ffin m o CTI 
ro «H r- in o r- 
o <=r r- r- o G~\ 

O CM 
rH O 
CM in 
cn oo 
<H r- 
^ r- 

po in co o CM       ro in 

o ro 
o •* 
O <N 
o r- 
O rH 
o o 
o <tf 

r- o oo 
o o <£> 
^r o *x> 
O   O CO 
rH   O O 
CM   O CO 
oo o m 
rH   O «* 
"sr o m 
no en 

O   O   O   rH   O 

"sP O 
00 o 
«sT O 
CM o 
r- o i 
rH o  i 
O O  ' 
«sP O    ' 
<T) O   ■ 
<X> O   ■ 
<£> O   ' 
CO O   I 
o o 
CO o 
in o 

o o o o o 

CM o oo r- 
KD rH   kO 
rH o in o 

o o o 
o o < > "^ 
o o o ro 
D o o •^r 
<~i o o (M 1/1 
o o o p- <^r 
o o C ) rH in 
o o o o kD 
o r> o "vT oo 
CO o o 00 rH 
O o o KD rH 
D o o <£> CO 
n o o m r- 
D o o o KD 
CO o o CO o 
o o o m rH 
co o CD ■* r- 
ro o (■"■> uo o 
o o o OO r- 

o o r- r- ■^r o r- rH o o o ■^ r- rH > 
rH <n ro m o o o o o uo o 
O   O CS] r- oo o r- o o o OO r- 

rH 
^ 

o o o o o ro o o o o o o Ü 

o 
"^   CO o o o 
CM   rH o ro o O o r- ■^r O IH" 
rH   m o o ro C 3 o ^D oo r- o 
«sT   CO ro ro o «a1 O o CN o\ o o CQ 
ro co o o o CM o o rH rH rH o 
co ro o o o r— o o rH i> rH o 4c 

CM   iO o o ro rH o o ro rH C) o * 
er. r- ro ro ro C 3 c > o o CO CO o o * 
<£)   O o o ro rH ■sT co o LO CO OO in o * 

o o ro r~ o-i o C ) \D rH l/l KD o * 
in r- ro o o o IX) o o <£> rH r- <X) o * 
<^r «a1 o o ro ^ kD o o m CO OJ l/l o * 
r- o o ro ro o CO co o OO r- o CT\ o * 
in CM ro ro o rH O O o rH VD r~ rH o * 
CN]   <^> o ro ro (NJ CO o CJ Ln O rH LD o 4c 

CM   CM ro o ro OO in o o OO rH CO o-\ o -K 

CO   CM <D ro o rH T o o \> r- LO l~- o ■X 
O   O o ro ro -^ in o o oo o r- o^ o * 
O   O o o o 00 oo o o CM r- co CN o * 

o ro o ro o ro ro ro o o O rH 

II 11 4c 

^ 01 4c 

e ■M * 

rH 1H 
II 4J 

<U 0 
■P T3 

CN ro ^ m 
^J1   ^J1   ^   ^ 

VD  [^   00  CTi  O  rH  CN 
Ln in in in vo ^ ^> 

■fc-K-K**-************* 

I 
I 

Q 
W 

w 
w 
p 

D 
EH 

8 
hi 
H 

w 
Q 

c 

cu 

>1 

CD 

o 
-P 

cd > 
C 
<u 
Cn 

n 
a 
10 

■n 
CD 

rn m 
n M 
<1> CD 
ö > 
G c 

•H o 
u 

CD 
(l> n 
rn r. 

■H tu 
S ä 

4-1 o 
(i 

cn 
X cn 
in •H 
B (H 

0) 
(II i-n 
cn C 

-H cd 
» Ä 
-P () 
U. 

X 
X 3 

B   >H 

ro 

G H 
O (D 

-H    -x -H -P 
■K cn 3 

S-l   * 3 O 
o * IM 1 

4->   * M-l £1 
•rH   -K -H 3 
ß   * •0 cn 
O   * 
S   * cn 

•K u 
G  * <D 
0  * G 

•H   * G 
4J   * ■H 
(CJ   * H 
H  * CD 
CD   -H J-) d o 
J-l   * 3 G 
-■H   * O 

-P * 4->    U   CO 
cn -K CD      • 

■K 3  cn 
>i* a — 
QJ   -K o >; * 

o (D 
G W 

G ^ 
() CO 
■H si 

■p +J in 
m ro CD     - 
n h   rH 
CD 

H X 
1 01   ^D 

u rH CJ1 O 
CD 
4J 

<p G    1 
ro H 

3 X J3 vp 
ü ro ü m 

i-l 
n n 

•H Cll a 
u, 3 

>1 O co 

CD 
4-1 

a, 
3   rH 
o 

s 
4-1 

-H 
■a 

4-1 
3 
o 
CD s 

3 
a u 



n> <\1 ra O 
01 1 
ü w 
01 l-~ 
(i) i£> 

H O 
01 

P IT) 
(1> r~ 
C en 

[> o o 
C 1 1 
oi w w 

^H (J\ cri 
01 tH rH 

a <d< ^r 
CM CM 

(11 O cj> 
rH C\J CM 
11 IT) U) 

■H 
P n m 

0) 
■p 
•p 
co 
u 

a) 
co 
A! 
0! 
a) 

p 
3 
o 

o 
ID 
XI 

I 

•o 
0) 
m 
p 
(i) 0) 
> (1> 
(1 >i 
o 
o 

(ii o 
Oi O 
c + 
01 w 
Xi o 

eno 
C   1 CO 
10 w 
Ä  «5 
O  CM <rt- 

CTi u> 
X o <0- II 
3 "^ <n- 
H      • </> CO 
<P   IT) <o- p 

(I) 
T3 p 

O (1) 3 
O -rH () 

rH    + <P 
1     H CO rH 
(0 O •H rH 
TJ  O P 0! 

££ 03 
CO CO 

(0 o p 
rH       ■ 0! CU 

<H ■H c 
a i P c 

■H CU ■H 
P  O P 
H   O •p rH 
3 o P 01 
e o 0 P 

o C) 
u o CU P 
P o 0 
3 o c 
0     • CD 
U]   rH 

P 
CD 03 

10 > o 
P c 1 
a> 0 w 
•p 0 ■31 

3 o <M 
0 H O 
i rH CM 
a 0! in 
3 

u c 
CD 
en 
p 
CD 
> 
c 
o 
u 
c 
o 
a 
3 

CD 
Ü 
Ö 
0! 
r-l 
0! 

X! 

■a 
c 
CO 

a 
3 
o 

CD 
U 
P .—. 
3 > 
O H 
CO C 

0 
CD 
P CO 
CD C 
Si o 
a p 
CO -p 

3 
CD 

N a 

CM X! 
CO 

?! P 
H 
PI CD 
CO 0 
O C 
05 cfl 
PH rH 

0! 
E-i X! 
c/> 
H e 
H CD 

P 
CO CO 
H >1 
CO CO 
w 
X 
H 

EH 

3 
rtl a 
w 
w 
PS 
K 
H 

p 
•H 
P 

P 
P 
CO 
o 

CD CM 
rn O 
01 1 
M Ul 

p a 

CO 

+ 

rQ * 
(0 * (1) rH 
-p * U o * H 1 
0)  * 3 w 
Ü  * O o 
c * to o 
A3   * o 
rH   -X o 
(Ö  * o 
.Q  * li) * IM 
+J   * 
H   * iH 
rd * 
-P * 
VI   -X * OH i-H 
>i* tn 

o 
01 
X! 

p O o CD 
CD o o Oi 
P + + CO 
P w w M 
01 o o 01 
CJ o o CD 

Oi 
cO 

a o 
P 

CD 
Oi 
0! 
M 
0) 
CD 

P 
O 
Si 

si 
en 

e 
3 
p 
p 
u 
CD a 

■d 
o 
a 
G 

P 
c 
o 

Oi 
CO 

+ 

(1> O o 
l-n o o 
01 + + 
A! W w 
01 o o 
(1> o o 
H o o 

o C ) 

fi o o <) o o 
P o o 
P <) o o 
X! 

0, rH p a 
Oi o 

p 
Oi 

*   *   *   * 



■0 
c 
o 
u 
CD 

•O 
G 
to 

a 
3 
0 

G 
CD 
4-1 
4-1 
■H 
H 
s 
X 
3 

s a 
3 

^r () -M 
in rJ 

l-n 
c 

■H 
in 4-> 
[^ >! 

£1 

CD 
4-1 
3 

II l-i ^ 
rH X 
frt CD .-1 
4J u CD 
ri C n 
H 

Ol 
W 
CD > 
c 

-P 

ed 
en 

■Ö 
4-1 

en o » 
4-1 o a 
•H (l> 
Ö «j s 
3 tji 

cd 
en 
4-1 

M M 
U a (I) 
o 3 > 
r? o <^ 01 (> 

i-i in CH 
T) m •o C 
■H in •H O -H 
H >ir- U CM 
Oi (0 C7i r- Ol 

-H -H m G 
4J 4-1 ■H 
iH rH h 
3 3 ■r-l 
SI TH a rH 4J 

* * P * * c * * CD * * a 
rH o CM O rH KD CM (M CM CM (M CM CM CO * * Ü 
O 

1 
o 
+ 

o 
1 

o 
+ 

o 
1 1 

O 
1 

O 
1 

o 
1 

O 
1 

O O 
1 

o 
1 

o 
1 

* * * & 
M w w w Itl IxJ w w w w w w w IxJ * * o 
o o r- o r- r- r- o^ O. <Xl o-t Ol en en * * u 
o o ro o <T> (M >,o m CO a) (I> CO CO rH + * 
o o <Ti o rH r- <r> kO (X) *X> ^ M) to -vT * * X 
o o O o rn u> o^ o-i o-, Ö. o> o-t Ol CM * * 3 
o o ■^ o "^ vo m r-H rH rH rH YH rH O * 4c H 
in o CM o o r\i r- CJi o> O", Ol o. Ol CM ■K * 
C\] o in o ro ro Ol Ot en Ö, oi o-t en m * * * * * * T-i o "^D o rH 00 m i-H rH rH r-\ rH rH ro 

i 

<r, c C a ß ß Ö ß a G ß ß ß ß 
* * * * 

o o o o o <> o o <) () () C) () o * * 
p p P p P p p p P P P p p p * * 
-p -p -P -p P P P p P P P p P p * * 
-J 3 3 0 3 3 3 3 Pi 3 3 3 pj 3 * * 
(1) 0) (I) (i> (l) fl) (I) (II fl) (1) (I) CIJ CD CJJ * * 
c a 1=1 ß Ö ß a a ß a ß ß a a * * 

■H -H 
C I -H      I 
0-HÜ I     0) 

■HI     CO .M   Ol 
4->  M   U cd   Cd 
ft«   III OÄ 

o 
CO   4H 

•H    CO   c+4    CO 
CD    I      I      I 

CO 
I 

4-> 
C CD 3 
H co o 
I     I     I 

********* 

>ifdcdcdcdfdcdcd 
1-IHHS-IS-IH14W 
cd ÖltJltJltJitTltJlcTi 
ScDCDCDCDCDCDCD 
S4J4J4J4-14-14-14-1 
3CCCÖÖCC 
CO  -H  -H  -H  -H  -H   -H  -H 

I 
CD 
Ol 
cd 

•H AS 
I H 

CD 
Ol rH 
cd   fd 
M   4-> 
rH     G 

O 
4-1 M 
JS  -H 
Ol    rl 

•H    O 
u si 
i   i 

H   rH 
cd  cd 
H rl 
O Ol 
CD    CD 

4-1 4-> 
C    C 

•H  -H 

I 
CD 
Ol 
cd 

•H .M 
I H 

<D 
OirH 
cd cd 
Al   0 
H    -H 

4-1 
ft M 
0 CD 

4-1   > 
1 I      I      I      I 

CD A: 
OlrH 
cd 
M M 
rH   O 

cd 
A!  X! 

cd * 
£1 * 

U * 
■H * 
4-> 4> 
H * 
cd * 
a* 

cd cd 
u u 
Ol Oi 
CD CD 
4-1 4-1 
C G 

•H -H   -H  -H 

cd cd 
H M 
Ol Ol 
CD CD 

4-1 4J 
G a 

cd * 
n * 
Oi * 
CD * 
4-1 * 
C * 

•H * 

CD 
4-1 
•H 

4-1 
G 



c 
o 

4-> 
o 

CD 
G 

■H 
a 

o 
-p 

■a 
c 

O 

P 
-P 
to 
S 

P 
O 

T3 
O 

P 
o ft 
p 
3 
o 

■a 
CD 

-H > 

cj 
o 

Si 

G -p g 
■H —  G 
P    CO <D   CD ft 
a CD ^ e \ e -H    O O 
rH    3 cp g P 

rH 
CO    O x x ^ 
10    > 3   3 

rH   -H 
CO 

CD 

CD  Si tp   <P rH 
g    CO -H 
10    CD CD    CD tp .—. CO    g Cn Di 

CD \ to to X 
rH >i   >i p   P 3 
■H H ja CD   CD rH 
CM G 

O    CO 
>   > 
tO   to 

tp 

X CD Cn 
3 CO  P CD    CD G 
H ft  CO G   G -H 
■H 3   P O   0 •Ö 
P O N    N 3 
rO P   G ■— — rH \ Di O 0 
X -rH CD    CD G 
3 ■a P rH   rH •H 

to T3 H CO   Ü -H  -H ,— 
p (!) •Ö <H 0   to <P   >H CO - > 
<LI p CD P P   CD P CO   CD 

Dl -H P P X!   P X    X CD •P s 
<U CO -H 3   rH P rH 
P <D CO CD P  P -H   tP CD 3 o 
G T3 CD CO G   G tp    g g CO    rH 
H ■Ö £ -H  -H N    N tO CD   CM 

CO P   O P    P P p 
rH P CO P ft ft CO 
O -H •p -■H —. CD    CD ft H   P 
P ■Ö •H T3 >i>iüfl H   H 
p CD ■d CD rH    H P   P &> CO    3 
G (D G   ft G tO 
O p P O  -H a) 0) ■H CD  tp 

Ü G 0 G P p p P N    CD 
•H G -H CO   H ■H   -H to •H  -Ö 

■P o O O ■-i 3 P    P O H  — 
3 a N -n to   g S   3 rH tO 

ft ■o p <H S   G 
G i 1 ro O    1 1     1 P   O 
H \ p O -H 

CO CO p CO CO    CO G   to 
w CD u -P    CD CD   CD \   to 
>1 >i CD G    >i >1 >1 O -H \ ■\ P -H  ~-- \ \ G  tP 
o o -H P    O O   O 
G G -a a G G   G P 

-H 
■o 

rH   rH   rH   rH \ \  \  \ 
o o o o 

o   g 

3 * 
a, * 
p * 
3 * 
o * 

G Di 
tO 

to •H   CO 
X T)   P 
H II    -H 
m P -o 
.a O    CD 

CJ 
P    G 

m P  -H 
G — 

■H ■ö 
i) G    CD 
G O  P 
m -H   Ü 

rH P    CD 
to CJ   rH 
X! CD   tp 

P    CD 
c P    P 
o O 

-H O    CD 
-p A 
i) P   P 
0) O   P   H 
to O  O ft s 
to CO 
CO G    rH (> tO    rH 
p P  -H 
CJ P s 

13   ft  X 
CD H   3 

T) T! ■Ü ft O  rH 
ID CD CD P   >  tp 
P G -m tn >, N 
ft N cfl ■H fl   P 

o o o o 

-H***********-!-:****-*** 



c ft to <> ■3 to to a. 
-H O ft ft 3 

•P 14 3 3 o 
m m () <> p. 

R M 14 rn 
n rt rn IT 

o o ■n 

44 w m CD m 
n -p P c o 

■H i (-; ■ri p. 

0) til 4-J X! 

4-> c » 
•H 44 4-1 

T1 0) (1) <) o 
(1) c C 

•H ■H W p. 

Tl 44 44 <U tl) 

a) 
■P 4-1 4-t ■p ■H m <) (> 3 3 

■H C C 

(1) H W 

14 0) <1> rH rH 

>i 
fr! fi to 

-P 
tfl 
P 

m 0 3 C) o 
n C C P •p 

,-H   O   <-H   i-H 

4-1 .-, 
•H 4-> 

T) C 

a> tu 

to 

to <l> 

4-> to P 

3 m a ft R 
C ID 

•rH to 

<1) 
X! 

0) C <) 
1-1 t) 4-1 

tl) N 

s to 

P 

to Ä J3 

n 14 +J m 
o O t) •rH 

•H P XI tl) 

P •P o \ 3 
trl •H 4-1 trt 4-1 

Fi •n •H 44 •H t) 

1-1 (i) ■rt Tl ■H 

fl 0) >1 tl) b 
4-1 t) 4-1 \ t) 

c 4-1 t) •H p. p 

•H p tt) (1) trl 

to c > 
P 4-1 to tl) rH to 

•H c tl) T) <) tl) 

Tl •H c tt) P 

tl) (> t) \ -H 

(>i N to o 1 

Tl tl) c tr 
tl) 4-1 4-1 >1 ti) 

4-1 t) <) \. 14 

trt t) ro ■—- 

H U U C \ 
tl) tl) tl) <N) 

P. ■P ■p rH 

<l> 3 3 \ \ 
t> C C O O 

m ft 
t£>   O  O   <H 

4-> 
tO 

X * 
CT> -X 
O * 

4-1 * 
XI * 

Öl 

XI 

■fc*******-):**** 

o C CN C C Ö c C Ö C 
Oi <U II tu (U tu tu tu P tu tu 

4-1 to o 4-> 4-> 4-1 -p 4-> (U 4-> +J 

>i 4-> ■Ö Tl P 4-) 4-> 4-) 4-1 R ■P 4-> 

r-H ■H p ■rH •rH •H ■rH •H ■H c •H •H 

tu U to 44 P P P 14 14 0 tfl 14 14 > 3 o ■H s 3 3 s 3 ■H ■H 3 3 
■H •P 14 

P 4-> R 14 to 4-1 4-> ft 4-> 3 tu X to 

to to o O tu to ■o c ■H U 4-1 3 C 

4-> ■rt p 44 H R tu -H P tu ■H -H O 

C O 44 ■H Oi X rH •H X 14 44 U 

tu <u C 44 to c O ■a G) Ü P a 
P Di to 

C 
tu 

■a tn 
(0 to to tu 

14 W 

14 to 

tu <U o ■a G tu to <U tu (U O tu tu 

14 rH ■H -rH -H H X rH rH > C rH rH 

10 -rH P P X ■H p •H ■H rH tu -H -H 

44 O p ■H 44 o 44 44 O Öl 44 44 

to tu <D R to to 14 

tu tu to > tu R <U <U tu tu tl) 

■H Ü O tu U U U 4-) > O u 
3 <0 to Ü 10 to to tfl 14 C to tfl 

■o 44 to •rt 10 44 <D 44 44 tO O 44 44 

o P o 14 44 P rH 14 14 4-1 U U M 
R tu 14 M P tu •H <D <U to 0) tu 

P o •H tu 4-> 44 4-1 4-> rH P P 

H Ö S 4-> C C C rH c C 

H •H Ü C •H to •H -H (0 •H -H 

to ■X ■H X 

(U      * •X ö -x 
U  -X ■x O  -X 
a * ■x ■X 

■X * 73 -x 
f0 * * aj * 
-p * * u -x 
(U  * * CO  -X 

TJ  + ■K 0.-X * ■K (U * 
+J  -X ■X H   X 
O  * •X iX X 
H  * * X 

a * •X C -x * -X O  -X 
X  * X ■H   -X 
3 * ■X 4J   -X 
l-l * ■X (0 -X 
4-t  -X ■X Fi -x 
\  -K ■X U  -X 
-P   -K ■X O -X 
CO   * ■X 4-4  -X 
73  -x •X Ö x 
o * ■X -H  -X 
a) * ■X •X 

tn -K ■X X -x 
■K ■X 3 -x 

4-J   + •X rH   X 
H   * ■X tp X 
f0   * •X •\ -X 
-P   * X -P  -x 
CO   * ■X to  -X * ■X Ti * 
>i* ■X O -X 
a) * * a> x 
M * ■X CJi x 

CO ■X 

•p ■X 

Xi ■X 

C71 +: 
•H ■X 

H •X 

Ä X 

tn X 
-rH X 

Ä ■X 

c ■X 

3 -X 

p X 

X 

+J ■X 

p ■X rn ■X 

p -X 

(0 ■X 

■K     +     -X-X-XX-X.-X-XXX-X-X-X-XX-X 



********** 
co 

O T3 
-H    Ö 

CO    O 
>i u 
CO    CD 

CO 

o 
-H TS 
-1-1 <1> 
3 -P !) 0) 
0) iH 
X UH 
(1) h 

o 
P i) 
■■H 
Tl CO 
(U ■P 

* Tl * 3 (3 
■X l)l <) * o U * <l) 

>i -X CO 
u ■X 
o ■X 
J-> ■X -p 
CO ■X fi ■H 

■■H ■X () h 
0 ■X H -H 

■X H 
(Tl ■X 
c ■X 

■H ■X 
f=, ■X CO 

■iH ■X h n 
P ■X <) u 

■X ■H <> 
Ti ■X s 
(1 ■X <fl ■X * 
tl) ■X ■P 
m ■X Fi ■rl 
m -X () h 
u ■X co -H 
o -X cH 

e -o 

ooooooooooooooooooooooooooo* 

r-cocMOOooooooor-oooovHtDoooorHOOo* 

ooooooooooooooooooooooooooo* 

ooorooooor-moor-ooooooooooorHoo* 

oooooooooooo 

oioooroooooooo 

o 
o 

o o 
o o 

O o o o o 
o o o 

I-l 
on 

rH   TH 

OD   03 
rH rH rH 
CO  CO  00 

rH rH   rH rH    rH   rH 
CM CM   CM CM   CM   CM 

to tO   CO O o O   CM   CM 
ro CM   <H in o es] 

o o 
o o 
rH rH 
CO CO 
rH rH 
CM CM 

<cr CM 
rH CM 

CM   fO -sä« m to r- co en CM   O   rH   CM   CO ■^r LD >£> r- co o tH 
o o o o o o o o rH   O   O   O   O O   O   O   O   O   rH   rH 
rH    rH rH    rH    i-t    rH    rH    rH rH   CM   CM   CM   CM CM   CM   CM   CM   CM   CM   CM 

OH  WO* 
O  O   O   O   -X 
ro en m <& -x 

P 
to 
C 

■H 
e 
M 
CD 
p 

fi o 

■X     -X     -X     -X 



Vita 

Joseph M. Oder was born on 12 August 1967 in Concord, California. 

He attended the United States Air Force Academy in Colorado Springs, 

Colorado where he majored in High Energy Physics. Upon receipt of a 

Bachelor of Science on 31 May 1989, he received a regular commission as a 

second lieutenant in the United States Air Force. He was assigned to duty as 

a Minuteman II Missile Combat Crewmember, at Ellsworth AFB, South 

Dakota. While at Ellsworth, he was selected as the Missile Combat Crew 

Flight Commander, ACP responsible for the field operations of the 44th 

Missile Wing. He received a Master of Science in Engineering Management 

from West Coast University while stationed at Vandenberg AFB, California. 

He entered the Air Force Institute of Technology School of Engineering in 

May 1996. 

Permanent Address: 9345 Paseo Tierra Verde 

Tucson AZ 85749 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of infoimetion is estimated to average 1 hour nor response, including the time for reviewing instructions, Marching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of mformetion Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188], Washington, DC 20503. 

1. AGENCY USE ONLY REPORT DATE 

December 1997 
3. REPORT TYPE AND DATES COVERED 

Master's Thesis 
4. TITLE AND SUBTITLE 

Reduced Computational Cost, Totally Symmetric Angular Quadrature Sets for 
Discrete Ordinates Radiation Transport 

6. AUTHOR(S) 

Joseph M. Oder, Captain, USAF 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institue of Technology 
2750 P Street 
WPAFB, OH 45433-7765 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

MR MIKE MARTINEZ 
SA-ALC/NWIC 
1651 FIRST STREET SE, B-20360 
KIRTLAND AFB NM 87117-5617 

5. FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GAP/ENP/97D-07 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distrobution unlimited 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Several new quadrature sets for use in the discrete ordinates method of solving the Boltzmann neutral particle transport 
equation are derived. These symmetric quadratures extend the traditional symmetric quadratures by allowing ordinates 
perpendicular to one or two of the coordinate axes. Comparable accuracy with fewer required ordinates is obtained. 
Quadratures up to seventh order are presented. The validity and efficiency of the quadratures is then tested and compared 
with the Sn level symmetric quadratures relative to a Monte Carlo benchmark solution. The criteria for comparison include 
current through the surface, scalar flux at the surface, volume average scalar flux, and time required for convergence. 
Appreciable computational cost was saved when used in an unstructured tetrahedral cell code using highly accurate 
characteristic methods. However, no appreciable savings in computation time was found using the new quadratures 
compared with traditional Sn methods on a regular Cartesian mesh using the standard diamond difference method. These 
quadratures are recommended for use in three-dimensional calculations on an unstructured mesh. 

14. SUBJECT TERMS 

Nuetron Transport Theory, Boltzmann Equation, Numerical Quadrature, Numerical Analysis 
15. NUMBER OF PAGES 

140 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed oy ANSI Std. 239.18 
Designed using Perform Pro, WHSIDI0R, Oct 04 


